Update README.md
Browse files
README.md
CHANGED
@@ -12,38 +12,42 @@ pipeline_tag: visual-question-answering
|
|
12 |
|
13 |
# Model Card for InternVL-Chat-V1.5
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Model Details
|
18 |
-
- **Model Type:**
|
19 |
- **Model Stats:**
|
20 |
- Architecture: [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) + MLP + [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b)
|
|
|
21 |
- Params: 25.5B
|
22 |
-
- Image size: dynamic resolution, max to 40 tiles of 448 x 448 during inference.
|
23 |
-
- Number of visual tokens: 256 * (number of tiles + 1)
|
24 |
|
25 |
- **Training Strategy:**
|
26 |
- Pretraining Stage
|
27 |
- Learnable Component: ViT + MLP
|
28 |
-
- Data:
|
29 |
- SFT Stage
|
30 |
- Learnable Component: ViT + MLP + LLM
|
31 |
-
- Data:
|
32 |
|
33 |
|
34 |
## Model Usage
|
35 |
|
36 |
-
We provide
|
37 |
|
38 |
You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
|
39 |
|
40 |
-
Note: If you meet this error `ImportError: This modeling file requires the following packages that were not found in your environment: fastchat`, please run `pip install fschat`.
|
41 |
-
|
42 |
-
|
43 |
```python
|
44 |
import json
|
45 |
import os
|
46 |
-
from internvl.model.internvl_chat import InternVLChatModel
|
47 |
from transformers import AutoTokenizer, AutoModel
|
48 |
from tqdm import tqdm
|
49 |
import torch
|
|
|
12 |
|
13 |
# Model Card for InternVL-Chat-V1.5
|
14 |
|
15 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AjPIKaxKLZCbzQRrPELPB.webp" alt="Image Description" width="300" height="300">
|
16 |
+
|
17 |
+
\[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
|
18 |
+
|
19 |
+
| Model | Date | Download | Note |
|
20 |
+
| ----------------------- | ---------- | --------------------------------------------------------------------------- | ---------------------------------- |
|
21 |
+
| InternVL-Chat-V1.5 | 2024.04.18 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5) | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
|
22 |
+
| InternVL-Chat-V1.2-Plus | 2024.02.21 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) | more SFT data and stronger |
|
23 |
+
| InternVL-Chat-V1.2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) | scaling up LLM to 34B |
|
24 |
+
| InternVL-Chat-V1.1 | 2024.01.24 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1) | support Chinese and stronger OCR |
|
25 |
|
26 |
## Model Details
|
27 |
+
- **Model Type:** multimodal large language model (MLLM)
|
28 |
- **Model Stats:**
|
29 |
- Architecture: [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) + MLP + [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b)
|
30 |
+
- Image size: dynamic resolution, max to 32 tiles of 448 x 448 (4K resolution) during inference.
|
31 |
- Params: 25.5B
|
|
|
|
|
32 |
|
33 |
- **Training Strategy:**
|
34 |
- Pretraining Stage
|
35 |
- Learnable Component: ViT + MLP
|
36 |
+
- Data: Please see our technical report.
|
37 |
- SFT Stage
|
38 |
- Learnable Component: ViT + MLP + LLM
|
39 |
+
- Data: Please see our technical report.
|
40 |
|
41 |
|
42 |
## Model Usage
|
43 |
|
44 |
+
We provide an example code to run InternVL-Chat-V1.2 using `transformers`.
|
45 |
|
46 |
You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
|
47 |
|
|
|
|
|
|
|
48 |
```python
|
49 |
import json
|
50 |
import os
|
|
|
51 |
from transformers import AutoTokenizer, AutoModel
|
52 |
from tqdm import tqdm
|
53 |
import torch
|