File size: 2,091 Bytes
79a1f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from transformers.utils import logging
from transformers.configuration_utils import PretrainedConfig
logger = logging.get_logger(__name__)
class OpenBAConfig(PretrainedConfig):
model_type = "openba"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers"
}
def __init__(
self,
vocab_size=32128,
hidden_size=512,
kv_channels=64,
ffn_hidden_size=2048,
num_layers=12,
num_decoder_layers=None,
hidden_dropout=0.1,
attention_dropout=0.1,
num_heads=8,
is_encoder_decoder=True,
use_cache=True,
initializer_factor=1.0,
pad_token_id=0,
eos_token_id=1,
decoder_start_token_id=0,
add_qkv_bias=False,
add_ffn_bias=False,
add_lm_head_bias=False,
max_seq_length=1024,
decoder_max_seq_length=256,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.kv_channels = kv_channels
self.ffn_hidden_size = ffn_hidden_size
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.initializer_factor = initializer_factor
self.num_heads = num_heads
self.add_qkv_bias = add_qkv_bias
self.add_ffn_bias = add_ffn_bias
self.add_lm_head_bias = add_lm_head_bias
self.max_seq_length = max_seq_length
self.decoder_max_seq_length = decoder_max_seq_length
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
) |