|
from typing import Optional, Tuple, Union |
|
import copy |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
BaseModelOutput, |
|
) |
|
from transformers.utils import logging, is_torch_fx_proxy |
|
|
|
from .configuration_openba import OpenBAConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) |
|
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() |
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) |
|
|
|
|
|
def rotate_half(x) -> torch.Tensor: |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: |
|
sin = torch.cat((sin, sin), dim=-1).to(tensor.device)[:, :, None, :] |
|
cos = torch.cat((cos, cos), dim=-1).to(tensor.device)[:, :, None, :] |
|
return (tensor * cos) + (rotate_half(tensor) * sin) |
|
|
|
|
|
class SwiGLUMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
multiple_of: int = 256 |
|
hidden_size = config.hidden_size |
|
ffn_hidden_size = int(2 * config.ffn_hidden_size / 3) |
|
ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of) |
|
self.ffn_hidden_size = ffn_hidden_size |
|
|
|
self.fc_in = nn.Linear(hidden_size, 2 * ffn_hidden_size, bias=config.add_ffn_bias) |
|
self.fc_out = nn.Linear(ffn_hidden_size, hidden_size, bias=config.add_ffn_bias) |
|
|
|
def swiglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return F.silu(x[0]) * x[1] |
|
self.act_func = swiglu |
|
|
|
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: |
|
hidden_states = self.fc_in(hidden_states) |
|
hidden_states = self.act_func(hidden_states) |
|
hidden_states = self.fc_out(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class OpenBAAttention(nn.Module): |
|
def __init__(self, config, attn_type='self'): |
|
super().__init__() |
|
self.attn_type = attn_type |
|
self.is_decoder = config.is_decoder |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_heads |
|
self.kv_channels = config.kv_channels |
|
self.proj_size = self.kv_channels * self.num_heads |
|
self.dropout = config.attention_dropout |
|
self.scale_attn = torch.sqrt(torch.tensor(self.kv_channels, dtype=torch.float32)) |
|
|
|
if self.attn_type == 'self': |
|
self.qkv = nn.Linear(self.hidden_size, 3 * self.proj_size, bias=config.add_qkv_bias) |
|
else: |
|
assert self.attn_type == 'cross' |
|
self.q = nn.Linear(self.hidden_size, self.proj_size, bias=config.add_qkv_bias) |
|
self.kv = nn.Linear(self.hidden_size, 2 * self.proj_size, bias=config.add_qkv_bias) |
|
|
|
self.rotary_embedding = create_sinusoidal_positions( |
|
num_pos=config.max_seq_length, |
|
dim=self.kv_channels, |
|
) |
|
|
|
self.o = nn.Linear(self.proj_size, self.hidden_size, bias=config.add_qkv_bias) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
key_value_states: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
layer_head_mask: Optional[Tuple[torch.Tensor]] = None, |
|
position_ids:Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
|
|
if self.rotary_embedding.device != position_ids.device: |
|
self.rotary_embedding = self.rotary_embedding.to(position_ids.device) |
|
|
|
if self.attn_type == 'self': |
|
mixed_qkv_states = self.qkv(hidden_states) |
|
new_tensor_shape = mixed_qkv_states.size()[:-1] + (self.num_heads, 3 * self.kv_channels) |
|
mixed_qkv_states = mixed_qkv_states.view(*new_tensor_shape) |
|
query_states, key_states, value_states = torch.chunk(mixed_qkv_states, 3, dim=-1) |
|
|
|
sincos = self.rotary_embedding[position_ids] |
|
sin, cos = torch.chunk(sincos, 2, dim=-1) |
|
query_states = apply_rotary_pos_emb(query_states, sin, cos) |
|
key_states = apply_rotary_pos_emb(key_states, sin, cos) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
if past_key_value is not None: |
|
past_key_states, past_value_states = past_key_value |
|
key_states = torch.cat([past_key_states, key_states], dim=-2) |
|
value_states = torch.cat([past_value_states, value_states], dim=-2) |
|
else: |
|
assert self.attn_type == 'cross' |
|
query_states = self.q(hidden_states) |
|
new_tensor_shape = query_states.size()[:-1] + (self.num_heads, self.kv_channels) |
|
query_states = query_states.view(*new_tensor_shape) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
if past_key_value is None: |
|
mixed_kv_states = self.kv(key_value_states) |
|
new_tensor_shape = mixed_kv_states.size()[:-1] + (self.num_heads, 2 * self.kv_channels) |
|
mixed_kv_states = mixed_kv_states.view(*new_tensor_shape) |
|
key_states, value_states = torch.chunk(mixed_kv_states, 2, dim=-1) |
|
|
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
else: |
|
key_states, value_states = past_key_value |
|
|
|
|
|
query_states = query_states.to(torch.float32) |
|
key_states = key_states.to(torch.float32) |
|
attn_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) / self.scale_attn |
|
attn_scores = attn_scores.masked_fill_(attention_mask, -10000.0) |
|
attn_weights = F.softmax(attn_scores, dim=-1).type_as(attn_scores) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_weights = attn_weights.to(value_states.dtype) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.proj_size) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output, present_key_value_state) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class OpenBABlock(nn.Module): |
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.dropout = config.hidden_dropout |
|
self.input_layernorm = nn.LayerNorm(config.hidden_size) |
|
self.self_attn = OpenBAAttention(config, attn_type='self') |
|
self.post_attn_layernorm = nn.LayerNorm(config.hidden_size) |
|
if self.is_decoder: |
|
self.inter_attn = OpenBAAttention(config, attn_type='cross') |
|
self.post_inter_attn_layernorm = nn.LayerNorm(config.hidden_size) |
|
self.mlp = SwiGLUMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
if past_key_value is not None: |
|
if not self.is_decoder: |
|
raise ValueError("`past_key_values` is passed to the encoder. Please make sure this is intended.") |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
attn_outputs = self.self_attn( |
|
layernorm_output, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output, present_key_value_state = attn_outputs[:2] |
|
attn_weights = attn_outputs[2:] |
|
residual = hidden_states |
|
|
|
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) |
|
layernorm_input = residual + attn_output |
|
layernorm_output = self.post_attn_layernorm(layernorm_input) |
|
|
|
if self.is_decoder: |
|
assert encoder_hidden_states is not None |
|
attn_outputs = self.inter_attn( |
|
layernorm_output, |
|
attention_mask=encoder_attention_mask, |
|
key_value_states=encoder_hidden_states, |
|
position_ids=position_ids, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) |
|
|
|
residual = layernorm_input |
|
layernorm_input = residual + attn_output |
|
layernorm_output = self.post_inter_attn_layernorm(layernorm_input) |
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state += attn_outputs[1] |
|
attn_weights += attn_outputs[2:] |
|
|
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
mlp_output = nn.functional.dropout(mlp_output, p=self.dropout, training=self.training) |
|
|
|
residual = layernorm_input |
|
output = residual + mlp_output |
|
outputs = (output,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value_state,) + attn_weights |
|
else: |
|
outputs += attn_weights |
|
return outputs |
|
|
|
|
|
class OpenBAPreTrainedModel(PreTrainedModel): |
|
config_class = OpenBAConfig |
|
base_model_prefix = "transformer" |
|
_no_split_modules = ["OpenBABlock"] |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (OpenBAAttention, OpenBAStack)): |
|
module.gradient_checkpointing = value |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, nn.LayerNorm): |
|
module.weight.data.fill_(1.0) |
|
module.bias.data.zero_() |
|
elif isinstance(module, OpenBAForConditionalGeneration): |
|
module.shared_embedding.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: |
|
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
elif isinstance(module, SwiGLUMLP): |
|
module.fc_in.weight.data.normal_(mean=0.0, std=factor * ((self.config.hidden_size) ** -0.5)) |
|
if hasattr(module.fc_in, "bias") and module.fc_in.bias is not None: |
|
module.fc_in.bias.data.zero_() |
|
module.fc_out.weight.data.normal_(mean=0.0, std=factor * ((module.ffn_hidden_size) ** -0.5)) |
|
if hasattr(module.fc_out, "bias") and module.fc_out.bias is not None: |
|
module.fc_out.bias.data.zero_() |
|
elif isinstance(module, OpenBAAttention): |
|
hidden_size = self.config.hidden_size |
|
kv_channels = self.config.kv_channels |
|
n_heads = self.config.num_heads |
|
if module.attn_type == 'self': |
|
module.qkv.weight.data[:n_heads * kv_channels].normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5)) |
|
module.qkv.weight.data[n_heads * kv_channels:].normal_(mean=0.0, std=factor * (hidden_size ** -0.5)) |
|
else: |
|
module.q.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5)) |
|
module.kv.weight.data.normal_(mean=0.0, std=factor * (hidden_size ** -0.5)) |
|
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * kv_channels) ** -0.5)) |
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.config.decoder_start_token_id |
|
pad_token_id = self.config.pad_token_id |
|
|
|
if decoder_start_token_id is None: |
|
raise ValueError( |
|
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id." |
|
"See T5 docs for more information." |
|
) |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) |
|
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
class OpenBAStack(OpenBAPreTrainedModel): |
|
def __init__(self, config, embed_tokens): |
|
super().__init__(config) |
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
self.block = nn.ModuleList( |
|
[OpenBABlock(config) for _ in range(config.num_layers)] |
|
) |
|
self.final_layernorm = nn.LayerNorm(config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = [None] * len(self.block) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
cur_length = past_length + seq_length |
|
|
|
|
|
position_ids = torch.arange(past_length, cur_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, seq_length, device=device) |
|
|
|
if self.is_decoder: |
|
if len(attention_mask.shape) == 2: |
|
seq_ids = torch.arange(seq_length, device=device) |
|
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] |
|
causal_mask = causal_mask.to(attention_mask.dtype) |
|
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] |
|
elif len(attention_mask.shape) == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
else: |
|
raise ValueError |
|
else: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
extended_attention_mask = extended_attention_mask < 0.5 |
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if encoder_attention_mask is None: |
|
encoder_seq_length = encoder_hidden_states.shape[1] |
|
encoder_attention_mask = torch.ones( |
|
batch_size, encoder_seq_length, device=device, dtype=torch.long |
|
) |
|
extended_encoder_attention_mask = encoder_attention_mask[:, None, None, :] |
|
extended_encoder_attention_mask = extended_encoder_attention_mask < 0.5 |
|
else: |
|
extended_encoder_attention_mask = None |
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
hidden_states = inputs_embeds |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_ids=position_ids, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=extended_encoder_attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
if use_cache: |
|
present_key_value_states += (present_key_value_state,) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[2],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[3],) |
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class OpenBAForConditionalGeneration(OpenBAPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [ |
|
r"encoder.embed_tokens.weight", |
|
r"decoder.embed_tokens.weight", |
|
] |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.shared_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.hidden_size = config.hidden_size |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = OpenBAStack(encoder_config, self.shared_embedding) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
decoder_config.max_seq_length = config.decoder_max_seq_length |
|
self.decoder = OpenBAStack(decoder_config, self.shared_embedding) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.add_lm_head_bias) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
def get_input_embeddings(self): |
|
return self.shared_embedding |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared_embedding = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,\ |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
sequence_output = sequence_output * (self.hidden_size ** -0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output).to(torch.float32) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) |
|
|
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
decoder_attention_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
if past_key_values is None: |
|
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past_key_values |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past_key_values: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
reordered_layer_past_states = reordered_layer_past_states + ( |
|
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), |
|
) |
|
|
|
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: |
|
raise ValueError( |
|
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" |
|
) |
|
if len(reordered_layer_past_states) != len(layer_past_states): |
|
raise ValueError( |
|
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" |
|
) |
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) |
|
return reordered_decoder_past |