File size: 7,113 Bytes
eb8ded1 8441800 eb8ded1 8441800 eb8ded1 b55c2d0 0659b9f 8441800 0659b9f 6f87d84 0659b9f eb8ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- legal
- RoBERTa
- pytorch
---
# Jargon-legal-4096
[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.
Jargon is available in several versions with different context sizes and types of pre-training corpora.
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
-->
| **Model** | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base) | scratch |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed) | jargon-general-base |5.4GB Medical Corpus|
| [jargon-general-legal](https://huggingface.co/PantagrueLLM/jargon-general-legal) | jargon-general-base |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) | jargon-general-base |Medical+Legal Corpora|
| [jargon-legal](https://huggingface.co/PantagrueLLM/jargon-legal) | scratch |18GB Legal Corpus|
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096) (this model)| scratch |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed) | scratch |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096) | scratch |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096) | scratch |[NACHOS](https://drbert.univ-avignon.fr/)|
## Evaluation
The Jargon models were evaluated on an range of specialized downstream tasks.
#### Legal Domain Benchmark
Results averaged across five runs with varying random seeds.
| |[ECtHR-FR](https://huggingface.co/datasets/audibeal/fr-echr)|[OACS](https://www.jeuxdemots.org/OACS/oacs.php)|[SJP](https://aclanthology.org/2021.nllp-1.3/)|
|-------------------------|:-----------------------:|:-----------------------:|:-----------------------:|
| **Task Type** | Document Classification | Document Classification | Document Classification |
| **Metric** | Macro-F1 | Macro-F1 | Macro-F1 |
| jargon-general-base | 42.9 | 50.8 | 55.1 |
| jargon-multidomain-base | 44.5 | 55.6 | 58.1 |
| jargon-general-legal | 43.1 | 49.9 | 54.5 |
| jargon-legal | 44.6 | 51.6 | 56.7 |
| jargon-legal-4096 | 45.9 | 54.1 | 68.2 |
For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).
## Using Jargon models with HuggingFace transformers
You can get started with `jargon-legal-4096` using the code snippet below:
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-legal-4096", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-legal-4096", trust_remote_code=True)
jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allé au <mask> hier")
```
You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.
- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
- GENCI-IDRIS (Grant 2022 A0131013801)
- French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
- MIAI@Grenoble Alpes ANR-19-P3IA-0003
- PROPICTO ANR-20-CE93-0005
- Lawbot ANR-20-CE38-0013
- Swiss National Science Foundation (grant PROPICTO N°197864)
- **Authors**
- Vincent Segonne
- Aidan Mannion
- Laura Cristina Alonzo Canul
- Alexandre Audibert
- Xingyu Liu
- Cécile Macaire
- Adrien Pupier
- Yongxin Zhou
- Mathilde Aguiar
- Felix Herron
- Magali Norré
- Massih-Reza Amini
- Pierrette Bouillon
- Iris Eshkol-Taravella
- Emmanuelle Esperança-Rodier
- Thomas François
- Lorraine Goeuriot
- Jérôme Goulian
- Mathieu Lafourcade
- Benjamin Lecouteux
- François Portet
- Fabien Ringeval
- Vincent Vandeghinste
- Maximin Coavoux
- Marco Dinarelli
- Didier Schwab
## Citation
If you use this model for your own research work, please cite as follows:
```bibtex
@inproceedings{segonne:hal-04535557,
TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
URL = {https://hal.science/hal-04535557},
BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
ADDRESS = {Turin, Italy},
YEAR = {2024},
MONTH = May,
KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
HAL_ID = {hal-04535557},
HAL_VERSION = {v1},
}
```
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!--
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
|