File size: 21,308 Bytes
c2852a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import LayerNorm
from fairseq.models.roberta import (
RobertaModel as RobertModel,
RobertaEncoder as RobertaEncoderFS
)
from transformers.models.roberta.modeling_roberta import (
RobertaEncoder,
RobertaConfig,
RobertaModel,
RobertaLMHead,
RobertaForMaskedLM,
RobertaEmbeddings,
RobertaForTokenClassification,
RobertaForSequenceClassification
)
from transformers.modeling_outputs import (
MaskedLMOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
)
from .linformer import LinformerTransformerEncoderLayer
from .jargon_configuration import JargonConfig
class JargonForSequenceClassification(RobertaForSequenceClassification):
config_class = JargonConfig
def __init__(self, config, **kwargs):
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
self.roberta = JargonModel(config, add_pooling_layer=False)
self.sbo_head = self.build_sbo_head(config)
def build_sbo_head(self, config):
return SBOHead(
config,
embedding_weights=(
self.roberta.embeddings.word_embeddings.weight
if not config.untie_weights_roberta
else None
)
)
class JargonForTokenClassification(RobertaForTokenClassification):
config_class = JargonConfig
def __init__(self, config, **kwargs):
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
self.roberta = JargonModel(config, add_pooling_layer=False)
self.sbo_head = self.build_sbo_head(config)
def build_sbo_head(self, config):
return SBOHead(
config,
embedding_weights=(
self.roberta.embeddings.word_embeddings.weight
if not config.untie_weights_roberta
else None
)
)
class JargonForMaskedLM(RobertaForMaskedLM):
config_class = JargonConfig
def __init__(self, config, **kwargs):
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
self.roberta = JargonModel(config, add_pooling_layer=False)
self.sbo_head = self.build_sbo_head(config)
def build_sbo_head(self, config):
return SBOHead(
config,
embedding_weights=(
self.roberta.embeddings.word_embeddings.weight
if not config.untie_weights_roberta
else None
)
)
class JargonForMaskedLMFS(RobertaForMaskedLM):
def __init__(self, config, dictionary, **kwargs):
config_class = JargonConfig
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
self.roberta = FlaubertEncoder(config, dictionary)
def build_sbo_head(self, config):
return SBOHead(
config,
embedding_weights=(
self.roberta.embeddings.word_embeddings.weight
if not config.untie_weights_roberta
else None
)
)
class JargonEmbeddings(RobertaEmbeddings):
def __init__(self, config, **kwargs):
config_class = JargonConfig
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class JargonEncoder(RobertaEncoder):
def __init__(self, args):
compress_layer = None
if args.shared_layer_kv_compressed == 1 and compress_layer is None:
compress_layer = nn.Linear(
args.max_positions,
args.max_positions // args.compressed
)
# intialize parameters for compressed layer
nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
if args.freeze_compress == 1:
compress_layer.weight.requires_grad = False
compress_layer = compress_layer
super().__init__(args)
self.layer = nn.ModuleList([LinformerTransformerEncoderLayer(args, compress_layer) for _ in range(args.num_layers)])
self.compress_layer = compress_layer
if args.encoder_normalize_before:
self.layer_norm = LayerNorm(args.embed_dim)
else:
self.layer_norm = None
self.lm_head = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
x = super().forward(hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict)
if self.layer_norm is not None:
x.last_hidden_state = self.layer_norm(x.last_hidden_state)
return x
def build_encoder(self, args, dictionary, embed_tokens):
encoder = LinformerTransformerEncoder(args)
return encoder
if args.use_linformer:
encoder = LinformerTransformerEncoder(args, dictionary, embed_tokens)
elif args.use_fft:
encoder = FourierTransformerEncoder(args, dictionary, embed_tokens)
else:
encoder = TransformerEncoder(args, dictionary, embed_tokens)
encoder.apply(init_bert_params)
return encoder
def output_layer(self, features, masked_tokens=None, pairs=None, **unused):
lm_out = self.lm_head(features, masked_tokens)
if pairs is not None:
sbo_out = self.sbo_head(features, pairs)
return lm_out, sbo_out
else:
return lm_out
class JargonModel(RobertaModel):
config_class = JargonConfig
def __init__(self, config, **kwargs):
config_class = JargonConfig
base_model_prefix = "jargon"
super().__init__(config, **kwargs)
self.embeddings = JargonEmbeddings(config)
self.encoder = JargonEncoder(config)
# Copied from modeling_roberta.py
# Add transpose of embeddings as implemented in fairseq
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
embedding_output = embedding_output.transpose(0,1)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = encoder_outputs[0].transpose(0,1)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
# Fairseq Linformer implementation works with transposed hidden states -> we transpose them back for HF implementation.
if output_hidden_states:
encoder_outputs.hidden_states = [h.transpose(0,1) for h in encoder_outputs.hidden_states]
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class SBOLayer(nn.Module):
def __init__(self, input_size, hidden_size, activation, export):
super().__init__()
self.layer = nn.Linear(input_size, hidden_size)
self.activ = get_activation_fn(activation)
self.norm = LayerNorm(hidden_size)
def forward(self, x):
return self.norm(self.activ(self.layer(x)))
class SBONetwork(nn.Module):
def __init__(self, input_size, hidden_size, activation, export):
super().__init__()
self.layers = nn.ModuleList([
self.build_sbo_layer(input_size, hidden_size, activation, export),
self.build_sbo_layer(hidden_size, hidden_size, activation, export)
])
self.layers = nn.Sequential(*self.layers)
def build_sbo_layer(self, input_size, output_size, activation, export):
return SBOLayer(input_size, output_size, activation, export)
def forward(self, x):
return self.layers(x)
class SBOHead(nn.Module):
def __init__(self, args, embedding_weights, max_targets=10, position_embedding_size=200):
super().__init__()
self.position_embeddings = nn.Embedding(max_targets, position_embedding_size)
export = getattr(args, "export", False)
hidden_size = args.embed_dim
input_size = hidden_size * 2 + position_embedding_size
activation = getattr(args, "activation_fn", "relu") or "relu"
self.mlp_layer_norm = self.build_sbo_network(input_size, hidden_size, activation, export)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(
embedding_weights.size(1),
embedding_weights.size(0),
bias=False
)
if embedding_weights is not None:
self.decoder.weight = embedding_weights
self.bias = nn.Parameter(torch.zeros(embedding_weights.size(0)))
self.max_targets = max_targets
def build_sbo_network(self, input_size, hidden_size, activation, export):
return SBONetwork(input_size, hidden_size, activation, export)
def forward(self, hidden_states, pairs):
bs, num_pairs, _ = pairs.size()
bs, seq_len, dim = hidden_states.size()
# pair indices: (bs, num_pairs)
left, right = pairs[:,:, 0], pairs[:, :, 1]
# (bs, num_pairs, dim)
left_hidden = torch.gather(hidden_states, 1, left.unsqueeze(2).repeat(1, 1, dim))
# pair states: bs * num_pairs, max_targets, dim
left_hidden = left_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)
right_hidden = torch.gather(hidden_states, 1, right.unsqueeze(2).repeat(1, 1, dim))
# bs * num_pairs, max_targets, dim
right_hidden = right_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)
# (max_targets, dim)
position_embeddings = self.position_embeddings.weight
z = torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1)
hidden_states = self.mlp_layer_norm(torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1))
# target scores : bs * num_pairs, max_targets, vocab_size
target_scores = self.decoder(hidden_states) + self.bias
return target_scores
def get_activation_fn(activation):
"""Returns the activation function corresponding to `activation`"""
if activation == "relu":
return F.relu
elif activation == "relu_squared":
return F.relu_squared
elif activation == "gelu":
return F.gelu
elif activation == "gelu_fast":
deprecation_warning(
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
)
return F.gelu_accurate
elif activation == "gelu_accurate":
return F.gelu_accurate
elif activation == "tanh":
return torch.tanh
elif activation == "linear":
return lambda x: x
elif activation == "swish":
return torch.nn.SiLU
else:
raise RuntimeError("--activation-fn {} not supported".format(activation))
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
|