--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.3 tags: - generated_from_trainer model-index: - name: home/migel/tess-2.5-mistral-7B-phase-1 results: [] --- ![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&) # QuantFactory/Tess-3-7B-SFT-GGUF This is quantized version of [migtissera/Tess-3-7B-SFT](https://huggingface.co/migtissera/Tess-3-7B-SFT) created using llama.cpp # Original Model Card [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.3 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer tokenizer_use_fast: false load_in_8bit: false load_in_4bit: false strict: false model_config: datasets: - path: /home/migel/ai_datasets/tess-v1.5b-chatml.jsonl type: sharegpt conversation: chatml - path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-multi_turn_chatml.jsonl type: sharegpt conversation: chatml - path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-single_turn_chatml.jsonl type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: last_run_prepared_mistral val_set_size: 0.0 output_dir: /home/migel/tess-2.5-mistral-7B-phase-1 resume_from_checkpoint: /home/migel/tess-2.5-mistral-7B-phase-1/checkpoint-440 auto_resume_from_checkpoints: true sequence_len: 16384 sample_packing: true pad_to_sequence_len: true gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 logging_steps: 1 optimizer: adamw_8bit lr_scheduler: constant learning_rate: 1e-6 wandb_project: mistral-7b wandb_watch: wandb_run_id: wandb_log_model: train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true saves_per_epoch: 10 evals_per_epoch: 10 save_total_limit: 3 save_steps: eval_sample_packing: false debug: deepspeed: /home/migel/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<|im_start|>" eos_token: "<|im_end|>" pad_token: "<|end_of_text|>" ```

# Tess-3-7B-SFT ![Tess-3](https://huggingface.co/migtissera/Tess-v2.5-Qwen2-72B/resolve/main/Tess-v2.5.png) Tess-3-7B is a finetuned version of the Mistral-7B-v0.3 base model. This version is the first phase of the final Tess-3 model, and have been trained with supervised fine-tuning (SFT) on a curated dataset of ~500K samples. The total SFT dataset contains about 1B tokens. This model has 32K context length. # Sample code to run inference Note that this model uses ChatML prompt format. ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer from stop_word import StopWordCriteria model_path = "migtissera/Tess-3-7B-SFT" output_file_path = "/home/migel/conversations.jsonl" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_4bit=False, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) terminators = [ tokenizer.convert_tokens_to_ids("<|im_end|>") ] def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.75, "generate_len": 1024, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f"{string}" conversation = f"""<|im_start|>system\nYou are Tesoro, a helful AI assitant. You always provide detailed answers without hesitation.<|im_end|>\n<|im_start|>user\n""" while True: user_input = input("You: ") llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n" answer = generate_text(llm_prompt) print(answer) conversation = f"{llm_prompt}{answer}\n" json_data = {"prompt": user_input, "answer": answer} with open(output_file_path, "a") as output_file: output_file.write(json.dumps(json_data) + "\n") ``` # Join My General AI Discord (NeuroLattice): https://discord.gg/Hz6GrwGFKD # Limitations & Biases: While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. Exercise caution and cross-check information when necessary. This is an uncensored model.