minicpm-visual-embedding-v0 / modeling_minicpmv.py
bokesyo's picture
Upload modeling_minicpmv.py
b8ab624 verified
raw
history blame
No virus
19.5 kB
import math
from typing import List, Optional
import timm
import torch
import torch.nn.functional as F
from PIL import Image
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
from transformers import LlamaTokenizer
from transformers import BatchEncoding # note that, MiniCPMV do padding during forward, not before forward
from transformers.utils import ModelOutput
from typing import Optional, Tuple
from dataclasses import dataclass
from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
from .resampler import Resampler
# for faster batch inference
from concurrent.futures import ThreadPoolExecutor
class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = MiniCPMForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.transform = self.init_transform()
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs):
print(gradient_checkpointing_kwargs)
print(f"MiniCPMV.gradient_checkpointing enbale called: {gradient_checkpointing_kwargs}")
self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
print("self.llm.gradient_checkpointing_enable ... OK")
self.vpm.set_grad_checkpointing(enable=True)
print("self.vpm.gradient_checkpointing_enable ... OK")
return
def init_vision_module(self):
model = timm.create_model(
self.config.vision_encoder,
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True
)
if isinstance(model, timm.models.VisionTransformer):
if model.attn_pool is not None:
model.attn_pool = torch.nn.Identity()
if self.config.drop_vision_last_layer:
model.blocks = model.blocks[:-1]
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
grid_size=int(math.sqrt(self.config.query_num)),
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True
)
def init_transform(self):
return transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
# Vision encoder turn raw pixel into visual tokens
def get_vision_embedding(self, pixel_values):
res = []
dtype = self.vpm.pos_embed.data.dtype
# first slice
H, W = pixel_values[0].shape[-2:]
tgt_size = (
math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0])
)
vision_embedding = self.vpm.forward_features(pixel_values[0].unsqueeze(0).type(dtype))
res.append(self.resampler(vision_embedding, tgt_size))
# remaining slices as a batch
if len(pixel_values) > 1:
H, W = pixel_values[1].shape[-2:]
tgt_size = (
math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0])
)
vision_embedding = self.vpm.forward_features(torch.stack(pixel_values[1:], dim=0).type(dtype))
res.append(self.resampler(vision_embedding, tgt_size))
return torch.vstack(res)
# input: input_ids(includes image placeholder), pixel_values, image_bound,output: unified inputs_embeds
def get_vllm_embedding(self, data):
if "vision_hidden_states" not in data:
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
for pixel_values in pixel_values_list:
if len(pixel_values) > 0:
vision_hidden_states.append(self.get_vision_embedding(pixel_values))
else:
vision_hidden_states.append([])
else:
vision_hidden_states = data["vision_hidden_states"]
vllm_embedding = (
self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
)
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[
torch.arange(r[0], r[1], dtype=torch.long)
for r in cur_image_bound
]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def _convert_to_tensors(
self, tokenizer, input_str, max_inp_length: Optional[int] = None):
if tokenizer.add_bos_token:
input_ids = tokenizer.encode(input_str)
else:
input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
# 跳过 im_start
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bound = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
model_input = {}
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
model_input["image_bound"] = image_bound
return model_input
def _process_list( # pad input tensors
self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None, padding_side: str = "left"
):
# pad_keys = ["input_ids"]
input_tensors = []
for data in data_list:
input_tensors.append(
self._convert_to_tensors(tokenizer, data, max_inp_length)
)
padded = pad([i["input_ids"] for i in input_tensors], padding_side=padding_side)
padded = padded.to(self.device)
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
return padded
def slice_image(self, image):
return slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
def get_slice_image_placeholder(self, image, tokenizer):
image_placeholder = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
)
slice_images = []
source_image, patches, best_grid = slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
slice_images.append(source_image)
final_placeholder = image_placeholder
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
final_placeholder += get_grid_placeholder(
tokenizer, best_grid, self.config.query_num
)
return slice_images, final_placeholder
def pad(orig_items, max_length=None, padding_value=0, padding_side="left"):
"""
Args:
orig_items: a list of input_ids, each input_ids should be [1, length_i]
"""
assert isinstance(orig_items, list)
assert isinstance(orig_items[0], torch.Tensor)
items = [t.squeeze() for t in orig_items]
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim == 1, "This pad function only expect B*Tensor([seq_len]) input." # Assuming 1D tensors for simplicity
if max_length is None:
max_length = max(item.shape[0] for item in items)
tensor = torch.full((batch_size, max_length), padding_value, dtype=items[0].dtype)
attention_mask = torch.zeros((batch_size, max_length), dtype=torch.int8)
for i, item in enumerate(items):
length = item.shape[0]
if padding_side == "left":
tensor[i, -length:] = item
attention_mask[i, -length:] = 1
else:
tensor[i, :length] = item
attention_mask[i, :length] = 1
return_dict = {
"input_ids": tensor,
"attention_mask": attention_mask,
}
return BatchEncoding(return_dict)
def slice_image(
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# dont need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def get_grid_placeholder(tokenizer, grid, query_num):
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
return slice_placeholder
def transform_image_mp(img_list, transform, device, max_workers=None):
pixel_values = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for img_batch in img_list:
img_inps = list(executor.map(transform, img_batch))
for i in range(len(img_inps)):
img_inps[i] = img_inps[i].to(device)
pixel_values.append(img_inps if img_inps else [])
return pixel_values
@dataclass
class BaseModelOutputWithAttentionMask(ModelOutput):
last_hidden_state: torch.FloatTensor = None
attention_mask: Optional[torch.Tensor] = None
class MiniCPMVEmbedding(MiniCPMV): # MiniCPMVEmbedding -> MiniCPMV -> Ultimately a CausalLM -> last_hidden_state for information retrieval
def fused_tokenize(
self,
data_list=None, # List[str]
img_list=None, # List[List[PIL.Image]]
tokenizer=None,
max_inp_length: Optional[int] = None,
vision_hidden_states=None, # default None
return_vision_hidden_states=False,
**kwargs):
assert data_list is not None
bs = len(data_list)
if img_list == None:
img_list = [[] for i in range(bs)]
assert bs == len(img_list)
model_inputs = self._process_list(tokenizer, data_list, max_inp_length, padding_side="left")
if vision_hidden_states is None:
pixel_values = transform_image_mp(img_list, self.transform, self.device, max_workers=8)
model_inputs["pixel_values"] = pixel_values
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
return model_inputs
def prepare_context(self, inputs, tokenizer):
text_, image_ = inputs
if not isinstance(text_, str):
raise NotImplementedError(f"chatml format expected, expect outmost type to be str but got {type(text_)}")
# 1.add text
content = text_
# 2. add image
if image_:
if self.config.slice_mode:
images, final_placeholder = self.get_slice_image_placeholder(
image_, tokenizer
) # crop one image into multiple sub images -> List[Image]
content = final_placeholder + "\n" + content
else:
images = [image_] # only keep one image without cropping -> List[Image]
content = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
+ "\n"
+ content
)
else:
images = []
return content, images
def forward(
self,
text, # List[str] Batch
image, # List[ PIL.Image ] Batch, one image for each data
tokenizer,
max_inp_length=2048,
**kwargs):
processed_image = []
processed_text = []
with ThreadPoolExecutor(max_workers=8) as executor:
contexts = list(executor.map(lambda inputs: self.prepare_context(inputs, tokenizer), zip(text, image)))
for context in contexts:
content_, image_ = context
processed_text.append(content_)
processed_image.append(image_)
model_inputs = self.fused_tokenize(
data_list=processed_text, # List[str]
img_list=processed_image, # List[List[PIL.Image]]
tokenizer=tokenizer,
max_inp_length=max_inp_length
)
# this is vision encoder forward.
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
vlm_outputs = self.llm.model(
input_ids=None, # because image and text have been merged into model_inputs["inputs_embeds"] here, we don't give input_ids
position_ids=None,
inputs_embeds=model_inputs["inputs_embeds"],
attention_mask=model_inputs["attention_mask"],
return_dict=True
)
last_hidden_state = vlm_outputs.last_hidden_state
last_hidden_state_normalized = F.normalize(last_hidden_state, dim=1)
return BaseModelOutputWithAttentionMask(
last_hidden_state=last_hidden_state_normalized,
attention_mask=model_inputs.attention_mask
)
class LlamaTokenizerWrapper(LlamaTokenizer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.point_start = "<point>"
self.point_end = "</point>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
@property
def eos_id(self):
return self.sp_model.eos_id()
@property
def bos_id(self):
return self.sp_model.bos_id()
@property
def unk_id(self):
return self.sp_model.unk_id()
@property
def im_start_id(self):
return self._convert_token_to_id(self.im_start)
@property
def im_end_id(self):
return self._convert_token_to_id(self.im_end)