|
|
|
|
|
import torch |
|
from torch import nn |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.layers import ConvTranspose2d, interpolate |
|
|
|
from ...structures import DensePoseChartPredictorOutput |
|
from ..utils import initialize_module_params |
|
from .registry import DENSEPOSE_PREDICTOR_REGISTRY |
|
|
|
|
|
@DENSEPOSE_PREDICTOR_REGISTRY.register() |
|
class DensePoseChartPredictor(nn.Module): |
|
""" |
|
Predictor (last layers of a DensePose model) that takes DensePose head outputs as an input |
|
and produces 4 tensors which represent DensePose results for predefined body parts |
|
(patches / charts): |
|
* coarse segmentation, a tensor of shape [N, K, Hout, Wout] |
|
* fine segmentation, a tensor of shape [N, C, Hout, Wout] |
|
* U coordinates, a tensor of shape [N, C, Hout, Wout] |
|
* V coordinates, a tensor of shape [N, C, Hout, Wout] |
|
where |
|
- N is the number of instances |
|
- K is the number of coarse segmentation channels ( |
|
2 = foreground / background, |
|
15 = one of 14 body parts / background) |
|
- C is the number of fine segmentation channels ( |
|
24 fine body parts / background) |
|
- Hout and Wout are height and width of predictions |
|
""" |
|
|
|
def __init__(self, cfg: CfgNode, input_channels: int): |
|
""" |
|
Initialize predictor using configuration options |
|
|
|
Args: |
|
cfg (CfgNode): configuration options |
|
input_channels (int): input tensor size along the channel dimension |
|
""" |
|
super().__init__() |
|
dim_in = input_channels |
|
n_segm_chan = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS |
|
dim_out_patches = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_PATCHES + 1 |
|
kernel_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECONV_KERNEL |
|
|
|
self.ann_index_lowres = ConvTranspose2d( |
|
dim_in, n_segm_chan, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
|
|
self.index_uv_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
|
|
self.u_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
|
|
self.v_lowres = ConvTranspose2d( |
|
dim_in, dim_out_patches, kernel_size, stride=2, padding=int(kernel_size / 2 - 1) |
|
) |
|
self.scale_factor = cfg.MODEL.ROI_DENSEPOSE_HEAD.UP_SCALE |
|
initialize_module_params(self) |
|
|
|
def interp2d(self, tensor_nchw: torch.Tensor): |
|
""" |
|
Bilinear interpolation method to be used for upscaling |
|
|
|
Args: |
|
tensor_nchw (tensor): tensor of shape (N, C, H, W) |
|
Return: |
|
tensor of shape (N, C, Hout, Wout), where Hout and Wout are computed |
|
by applying the scale factor to H and W |
|
""" |
|
return interpolate( |
|
tensor_nchw, scale_factor=self.scale_factor, mode="bilinear", align_corners=False |
|
) |
|
|
|
def forward(self, head_outputs: torch.Tensor): |
|
""" |
|
Perform forward step on DensePose head outputs |
|
|
|
Args: |
|
head_outputs (tensor): DensePose head outputs, tensor of shape [N, D, H, W] |
|
Return: |
|
An instance of DensePoseChartPredictorOutput |
|
""" |
|
return DensePoseChartPredictorOutput( |
|
coarse_segm=self.interp2d(self.ann_index_lowres(head_outputs)), |
|
fine_segm=self.interp2d(self.index_uv_lowres(head_outputs)), |
|
u=self.interp2d(self.u_lowres(head_outputs)), |
|
v=self.interp2d(self.v_lowres(head_outputs)), |
|
) |
|
|