Roopansh commited on
Commit
d4a0960
1 Parent(s): f3aa464

Latest Update

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -2
  2. README-2.md +0 -162
  3. README.md +46 -1
  4. app.py +0 -313
  5. app_VTON.py +0 -328
  6. apply_net.py +0 -359
  7. ckpt/densepose/model_final_162be9.pkl +0 -3
  8. ckpt/humanparsing/parsing_atr.onnx +0 -3
  9. ckpt/humanparsing/parsing_lip.onnx +0 -3
  10. ckpt/openpose/.DS_Store +0 -3
  11. ckpt/openpose/ckpts/body_pose_model.pth +0 -3
  12. configs/Base-DensePose-RCNN-FPN.yaml +0 -48
  13. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml +0 -16
  14. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml +0 -23
  15. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml +0 -23
  16. configs/cse/Base-DensePose-RCNN-FPN-Human.yaml +0 -20
  17. configs/cse/Base-DensePose-RCNN-FPN.yaml +0 -60
  18. configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml +0 -12
  19. configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml +0 -12
  20. configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml +0 -12
  21. configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml +0 -12
  22. configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml +0 -12
  23. configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml +0 -12
  24. configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml +0 -12
  25. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml +0 -133
  26. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml +0 -133
  27. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml +0 -119
  28. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml +0 -121
  29. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml +0 -138
  30. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml +0 -119
  31. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml +0 -119
  32. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml +0 -118
  33. configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml +0 -29
  34. configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml +0 -12
  35. configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml +0 -18
  36. configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml +0 -16
  37. configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml +0 -18
  38. configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml +0 -16
  39. configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml +0 -10
  40. configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml +0 -18
  41. configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml +0 -16
  42. configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml +0 -18
  43. configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml +0 -16
  44. configs/densepose_rcnn_R_101_FPN_s1x.yaml +0 -8
  45. configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml +0 -17
  46. configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml +0 -18
  47. configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml +0 -16
  48. configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml +0 -18
  49. configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml +0 -16
  50. configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml +0 -10
.gitattributes CHANGED
@@ -33,6 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- ckpt/** filter=lfs diff=lfs merge=lfs -text
37
  assets/teaser.png filter=lfs diff=lfs merge=lfs -text
38
- assets/teaser2.png filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
36
  assets/teaser.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/teaser2.png filter=lfs diff=lfs merge=lfs -text
README-2.md DELETED
@@ -1,162 +0,0 @@
1
-
2
- <div align="center">
3
- <h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>
4
-
5
- <a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
6
- <a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
7
- <a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
8
- <a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
9
-
10
-
11
- </div>
12
-
13
- This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).
14
-
15
- Star ⭐ us if you like it!
16
-
17
- ---
18
-
19
-
20
- <!-- ![teaser2](assets/teaser2.png)&nbsp;
21
- ![teaser](assets/teaser.png)&nbsp; -->
22
-
23
-
24
- ## TODO LIST
25
-
26
-
27
- - [x] demo model
28
- - [x] inference code
29
- - [ ] training code
30
-
31
-
32
-
33
- ## Requirements
34
-
35
- ```
36
- git clone https://github.com/yisol/IDM-VTON.git
37
- cd IDM-VTON
38
-
39
- conda env create -f environment.yaml
40
- conda activate idm
41
- ```
42
-
43
- ## Data preparation
44
-
45
- ### VITON-HD
46
- You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).
47
-
48
- After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.
49
-
50
- Structure of the Dataset directory should be as follows.
51
-
52
- ```
53
-
54
- train
55
- |-- ...
56
-
57
- test
58
- |-- image
59
- |-- image-densepose
60
- |-- agnostic-mask
61
- |-- cloth
62
- |-- vitonhd_test_tagged.json
63
-
64
- ```
65
-
66
- ### DressCode
67
- You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).
68
-
69
- We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).
70
-
71
- We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.
72
-
73
- After download the DressCode dataset, place image-densepose directories and caption text files as follows.
74
-
75
- ```
76
- DressCode
77
- |-- dresses
78
- |-- images
79
- |-- image-densepose
80
- |-- dc_caption.txt
81
- |-- ...
82
- |-- lower_body
83
- |-- images
84
- |-- image-densepose
85
- |-- dc_caption.txt
86
- |-- ...
87
- |-- upper_body
88
- |-- images
89
- |-- image-densepose
90
- |-- dc_caption.txt
91
- |-- ...
92
- ```
93
-
94
-
95
- ## Inference
96
-
97
-
98
- ### VITON-HD
99
-
100
- Inference using python file with arguments,
101
-
102
- ```
103
- accelerate launch inference.py \
104
- --width 768 --height 1024 --num_inference_steps 30 \
105
- --output_dir "result" \
106
- --unpaired \
107
- --data_dir "DATA_DIR" \
108
- --seed 42 \
109
- --test_batch_size 2 \
110
- --guidance_scale 2.0
111
- ```
112
-
113
- or, you can simply run with the script file.
114
-
115
- ```
116
- sh inference.sh
117
- ```
118
-
119
- ### DressCode
120
-
121
- For DressCode dataset, put the category you want to generate images via category argument,
122
- ```
123
- accelerate launch inference_dc.py \
124
- --width 768 --height 1024 --num_inference_steps 30 \
125
- --output_dir "result" \
126
- --unpaired \
127
- --data_dir "DATA_DIR" \
128
- --seed 42
129
- --test_batch_size 2
130
- --guidance_scale 2.0
131
- --category "upper_body"
132
- ```
133
-
134
- or, you can simply run with the script file.
135
- ```
136
- sh inference.sh
137
- ```
138
-
139
-
140
- ## Acknowledgements
141
-
142
- For the [demo](https://huggingface.co/spaces/yisol/IDM-VTON), GPUs are supported from [ZeroGPU](https://huggingface.co/zero-gpu-explorers), and masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).
143
-
144
- Parts of our code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).
145
-
146
-
147
-
148
- ## Citation
149
- ```
150
- @article{choi2024improving,
151
- title={Improving Diffusion Models for Virtual Try-on},
152
- author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
153
- journal={arXiv preprint arXiv:2403.05139},
154
- year={2024}
155
- }
156
- ```
157
-
158
- ## License
159
- The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
160
-
161
-
162
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,8 +1,53 @@
 
1
  base_model: stable-diffusion-xl-1.0-inpainting-0.1
2
  tags:
3
  - stable-diffusion-xl
4
  - inpainting
5
  - virtual try-on
6
  license: cc-by-nc-sa-4.0
 
7
 
8
- AILUSION V1 DEMO Virtual Try ON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
  base_model: stable-diffusion-xl-1.0-inpainting-0.1
3
  tags:
4
  - stable-diffusion-xl
5
  - inpainting
6
  - virtual try-on
7
  license: cc-by-nc-sa-4.0
8
+ ---
9
 
10
+
11
+
12
+ # Check out more codes on our [github repository](https://github.com/yisol/IDM-VTON)!
13
+
14
+ # IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild
15
+ This is an official implementation of paper 'Improving Diffusion Models for Authentic Virtual Try-on in the Wild'
16
+ - [paper](https://arxiv.org/abs/2403.05139)
17
+ - [project page](https://idm-vton.github.io/)
18
+
19
+ 🤗 Try our huggingface [Demo](https://huggingface.co/spaces/yisol/IDM-VTON)
20
+
21
+ ![teaser](assets/teaser.png)&nbsp;
22
+ ![teaser2](assets/teaser2.png)&nbsp;
23
+
24
+
25
+ ## TODO LIST
26
+
27
+
28
+ - [x] demo model
29
+ - [x] inference code
30
+ - [ ] training code
31
+
32
+
33
+
34
+
35
+ ## Acknowledgements
36
+
37
+ For the demo, GPUs are supported from [zerogpu](https://huggingface.co/zero-gpu-explorers), and auto masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).
38
+ Parts of the code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).
39
+
40
+
41
+
42
+ ## Citation
43
+ ```
44
+ @article{choi2024improving,
45
+ title={Improving Diffusion Models for Virtual Try-on},
46
+ author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
47
+ journal={arXiv preprint arXiv:2403.05139},
48
+ year={2024}
49
+ }
50
+ ```
51
+
52
+ ## License
53
+ The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
app.py DELETED
@@ -1,313 +0,0 @@
1
- import gradio as gr
2
- from PIL import Image
3
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
4
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
5
- from src.unet_hacked_tryon import UNet2DConditionModel
6
- from transformers import (
7
- CLIPImageProcessor,
8
- CLIPVisionModelWithProjection,
9
- CLIPTextModel,
10
- CLIPTextModelWithProjection,
11
- )
12
- from diffusers import DDPMScheduler,AutoencoderKL
13
- from typing import List
14
-
15
- import torch
16
- import os
17
- from transformers import AutoTokenizer
18
- import spaces
19
- import numpy as np
20
- from utils_mask import get_mask_location
21
- from torchvision import transforms
22
- import apply_net
23
- from preprocess.humanparsing.run_parsing import Parsing
24
- from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
- from torchvision.transforms.functional import to_pil_image
27
-
28
-
29
- def pil_to_binary_mask(pil_image, threshold=0):
30
- np_image = np.array(pil_image)
31
- grayscale_image = Image.fromarray(np_image).convert("L")
32
- binary_mask = np.array(grayscale_image) > threshold
33
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
- for i in range(binary_mask.shape[0]):
35
- for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
- output_mask = Image.fromarray(mask)
40
- return output_mask
41
-
42
-
43
- base_path = 'Roopansh/Ailusion-VTON-DEMO-v1'
44
- example_path = os.path.join(os.path.dirname(__file__), 'example')
45
-
46
- unet = UNet2DConditionModel.from_pretrained(
47
- base_path,
48
- subfolder="unet",
49
- torch_dtype=torch.float16,
50
- )
51
- unet.requires_grad_(False)
52
- tokenizer_one = AutoTokenizer.from_pretrained(
53
- base_path,
54
- subfolder="tokenizer",
55
- revision=None,
56
- use_fast=False,
57
- )
58
- tokenizer_two = AutoTokenizer.from_pretrained(
59
- base_path,
60
- subfolder="tokenizer_2",
61
- revision=None,
62
- use_fast=False,
63
- )
64
- noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
-
66
- text_encoder_one = CLIPTextModel.from_pretrained(
67
- base_path,
68
- subfolder="text_encoder",
69
- torch_dtype=torch.float16,
70
- )
71
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
- base_path,
73
- subfolder="text_encoder_2",
74
- torch_dtype=torch.float16,
75
- )
76
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
- base_path,
78
- subfolder="image_encoder",
79
- torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
- )
85
-
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
- base_path,
89
- subfolder="unet_encoder",
90
- torch_dtype=torch.float16,
91
- )
92
-
93
- parsing_model = Parsing(0)
94
- openpose_model = OpenPose(0)
95
-
96
- UNet_Encoder.requires_grad_(False)
97
- image_encoder.requires_grad_(False)
98
- vae.requires_grad_(False)
99
- unet.requires_grad_(False)
100
- text_encoder_one.requires_grad_(False)
101
- text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
-
109
- pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
- )
122
- pipe.unet_encoder = UNet_Encoder
123
-
124
- @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
- device = "cuda"
127
-
128
- openpose_model.preprocessor.body_estimation.model.to(device)
129
- pipe.to(device)
130
- pipe.unet_encoder.to(device)
131
-
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
- if is_checked_crop:
136
- width, height = human_img_orig.size
137
- target_width = int(min(width, height * (3 / 4)))
138
- target_height = int(min(height, width * (4 / 3)))
139
- left = (width - target_width) / 2
140
- top = (height - target_height) / 2
141
- right = (width + target_width) / 2
142
- bottom = (height + target_height) / 2
143
- cropped_img = human_img_orig.crop((left, top, right, bottom))
144
- crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
- else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
-
150
- if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
- mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
- else:
156
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
-
162
-
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
-
168
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
174
- with torch.no_grad():
175
- # Extract the images
176
- with torch.cuda.amp.autocast():
177
- with torch.no_grad():
178
- prompt = "model is wearing " + garment_des
179
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
- with torch.inference_mode():
181
- (
182
- prompt_embeds,
183
- negative_prompt_embeds,
184
- pooled_prompt_embeds,
185
- negative_pooled_prompt_embeds,
186
- ) = pipe.encode_prompt(
187
- prompt,
188
- num_images_per_prompt=1,
189
- do_classifier_free_guidance=True,
190
- negative_prompt=negative_prompt,
191
- )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
-
236
- if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
- return human_img_orig, mask_gray
240
- else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
-
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
-
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
-
250
- human_ex_list = []
251
- for ex_human in human_list_path:
252
- ex_dict= {}
253
- ex_dict['background'] = ex_human
254
- ex_dict['layers'] = None
255
- ex_dict['composite'] = None
256
- human_ex_list.append(ex_dict)
257
-
258
- ##default human
259
-
260
-
261
- image_blocks = gr.Blocks().queue()
262
- with image_blocks as demo:
263
- gr.Markdown("## AILUSION VTON 👕👔👚")
264
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
265
- with gr.Row():
266
- with gr.Column():
267
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
- with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
- with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
-
273
- example = gr.Examples(
274
- inputs=imgs,
275
- examples_per_page=10,
276
- examples=human_ex_list
277
- )
278
-
279
- with gr.Column():
280
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
- with gr.Row(elem_id="prompt-container"):
282
- with gr.Row():
283
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
- example = gr.Examples(
285
- inputs=garm_img,
286
- examples_per_page=8,
287
- examples=garm_list_path)
288
- with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
- with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
-
298
- with gr.Column():
299
- try_button = gr.Button(value="Try-on")
300
- with gr.Accordion(label="Advanced Settings", open=False):
301
- with gr.Row():
302
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
311
-
312
- image_blocks.launch()
313
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_VTON.py DELETED
@@ -1,328 +0,0 @@
1
- import gradio as gr
2
- import argparse, torch, os
3
- from PIL import Image
4
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
5
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
6
- from src.unet_hacked_tryon import UNet2DConditionModel
7
- from transformers import (
8
- CLIPImageProcessor,
9
- CLIPVisionModelWithProjection,
10
- )
11
- from diffusers import AutoencoderKL
12
- from typing import List
13
- from util.common import open_folder
14
- from util.image import pil_to_binary_mask, save_output_image
15
- from utils_mask import get_mask_location
16
- from torchvision import transforms
17
- import apply_net
18
- from preprocess.humanparsing.run_parsing import Parsing
19
- from preprocess.openpose.run_openpose import OpenPose
20
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
21
- from torchvision.transforms.functional import to_pil_image
22
- from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc
23
-
24
- parser = argparse.ArgumentParser()
25
- parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.")
26
- parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
27
- parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
28
- parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.")
29
- args = parser.parse_args()
30
-
31
- load_mode = args.load_mode
32
- fixed_vae = args.fixed_vae
33
-
34
- dtype = torch.float16
35
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
36
- model_id = 'yisol/IDM-VTON'
37
- vae_model_id = 'madebyollin/sdxl-vae-fp16-fix'
38
-
39
- dtypeQuantize = dtype
40
-
41
- if(load_mode in ('4bit','8bit')):
42
- dtypeQuantize = torch.float8_e4m3fn
43
-
44
- ENABLE_CPU_OFFLOAD = args.lowvram
45
- torch.backends.cudnn.allow_tf32 = False
46
- torch.backends.cuda.allow_tf32 = False
47
- need_restart_cpu_offloading = False
48
-
49
- unet = None
50
- pipe = None
51
- UNet_Encoder = None
52
- example_path = os.path.join(os.path.dirname(__file__), 'example')
53
-
54
- def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images):
55
- global pipe, unet, UNet_Encoder, need_restart_cpu_offloading
56
-
57
- if pipe == None:
58
- unet = UNet2DConditionModel.from_pretrained(
59
- model_id,
60
- subfolder="unet",
61
- torch_dtype=dtypeQuantize,
62
- )
63
- if load_mode == '4bit':
64
- quantize_4bit(unet)
65
-
66
- unet.requires_grad_(False)
67
-
68
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
69
- model_id,
70
- subfolder="image_encoder",
71
- torch_dtype=torch.float16,
72
- )
73
- if load_mode == '4bit':
74
- quantize_4bit(image_encoder)
75
-
76
- if fixed_vae:
77
- vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype)
78
- else:
79
- vae = AutoencoderKL.from_pretrained(model_id,
80
- subfolder="vae",
81
- torch_dtype=dtype,
82
- )
83
-
84
- # "stabilityai/stable-diffusion-xl-base-1.0",
85
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
86
- model_id,
87
- subfolder="unet_encoder",
88
- torch_dtype=dtypeQuantize,
89
- )
90
-
91
- if load_mode == '4bit':
92
- quantize_4bit(UNet_Encoder)
93
-
94
- UNet_Encoder.requires_grad_(False)
95
- image_encoder.requires_grad_(False)
96
- vae.requires_grad_(False)
97
- unet.requires_grad_(False)
98
-
99
- pipe_param = {
100
- 'pretrained_model_name_or_path': model_id,
101
- 'unet': unet,
102
- 'torch_dtype': dtype,
103
- 'vae': vae,
104
- 'image_encoder': image_encoder,
105
- 'feature_extractor': CLIPImageProcessor(),
106
- }
107
-
108
- pipe = TryonPipeline.from_pretrained(**pipe_param).to(device)
109
- pipe.unet_encoder = UNet_Encoder
110
- pipe.unet_encoder.to(pipe.unet.device)
111
-
112
- if load_mode == '4bit':
113
- if pipe.text_encoder is not None:
114
- quantize_4bit(pipe.text_encoder)
115
- if pipe.text_encoder_2 is not None:
116
- quantize_4bit(pipe.text_encoder_2)
117
-
118
- else:
119
- if ENABLE_CPU_OFFLOAD:
120
- need_restart_cpu_offloading =True
121
-
122
- torch_gc()
123
- parsing_model = Parsing(0)
124
- openpose_model = OpenPose(0)
125
- openpose_model.preprocessor.body_estimation.model.to(device)
126
- tensor_transfrom = transforms.Compose(
127
- [
128
- transforms.ToTensor(),
129
- transforms.Normalize([0.5], [0.5]),
130
- ]
131
- )
132
-
133
- if need_restart_cpu_offloading:
134
- restart_cpu_offload(pipe, load_mode)
135
- elif ENABLE_CPU_OFFLOAD:
136
- pipe.enable_model_cpu_offload()
137
-
138
- #if load_mode != '4bit' :
139
- # pipe.enable_xformers_memory_efficient_attention()
140
-
141
- garm_img= garm_img.convert("RGB").resize((768,1024))
142
- human_img_orig = dict["background"].convert("RGB")
143
-
144
- if is_checked_crop:
145
- width, height = human_img_orig.size
146
- target_width = int(min(width, height * (3 / 4)))
147
- target_height = int(min(height, width * (4 / 3)))
148
- left = (width - target_width) / 2
149
- top = (height - target_height) / 2
150
- right = (width + target_width) / 2
151
- bottom = (height + target_height) / 2
152
- cropped_img = human_img_orig.crop((left, top, right, bottom))
153
- crop_size = cropped_img.size
154
- human_img = cropped_img.resize((768,1024))
155
- else:
156
- human_img = human_img_orig.resize((768,1024))
157
-
158
- if is_checked:
159
- keypoints = openpose_model(human_img.resize((384,512)))
160
- model_parse, _ = parsing_model(human_img.resize((384,512)))
161
- mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
162
- mask = mask.resize((768,1024))
163
- else:
164
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
165
- # mask = transforms.ToTensor()(mask)
166
- # mask = mask.unsqueeze(0)
167
-
168
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
169
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
170
-
171
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
172
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
173
-
174
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
175
- # verbosity = getattr(args, "verbosity", None)
176
- pose_img = args.func(args,human_img_arg)
177
- pose_img = pose_img[:,:,::-1]
178
- pose_img = Image.fromarray(pose_img).resize((768,1024))
179
-
180
- if pipe.text_encoder is not None:
181
- pipe.text_encoder.to(device)
182
-
183
- if pipe.text_encoder_2 is not None:
184
- pipe.text_encoder_2.to(device)
185
-
186
- with torch.no_grad():
187
- # Extract the images
188
- with torch.cuda.amp.autocast(dtype=dtype):
189
- with torch.no_grad():
190
- prompt = "model is wearing " + garment_des
191
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
192
- with torch.inference_mode():
193
- (
194
- prompt_embeds,
195
- negative_prompt_embeds,
196
- pooled_prompt_embeds,
197
- negative_pooled_prompt_embeds,
198
- ) = pipe.encode_prompt(
199
- prompt,
200
- num_images_per_prompt=1,
201
- do_classifier_free_guidance=True,
202
- negative_prompt=negative_prompt,
203
- )
204
-
205
- prompt = "a photo of " + garment_des
206
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
207
- if not isinstance(prompt, List):
208
- prompt = [prompt] * 1
209
- if not isinstance(negative_prompt, List):
210
- negative_prompt = [negative_prompt] * 1
211
- with torch.inference_mode():
212
- (
213
- prompt_embeds_c,
214
- _,
215
- _,
216
- _,
217
- ) = pipe.encode_prompt(
218
- prompt,
219
- num_images_per_prompt=1,
220
- do_classifier_free_guidance=False,
221
- negative_prompt=negative_prompt,
222
- )
223
-
224
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
225
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
226
- results = []
227
- current_seed = seed
228
- for i in range(number_of_images):
229
- if is_randomize_seed:
230
- current_seed = torch.randint(0, 2**32, size=(1,)).item()
231
- generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None
232
- current_seed = current_seed + i
233
-
234
- images = pipe(
235
- prompt_embeds=prompt_embeds.to(device,dtype),
236
- negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
237
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
238
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
239
- num_inference_steps=denoise_steps,
240
- generator=generator,
241
- strength = 1.0,
242
- pose_img = pose_img.to(device,dtype),
243
- text_embeds_cloth=prompt_embeds_c.to(device,dtype),
244
- cloth = garm_tensor.to(device,dtype),
245
- mask_image=mask,
246
- image=human_img,
247
- height=1024,
248
- width=768,
249
- ip_adapter_image = garm_img.resize((768,1024)),
250
- guidance_scale=2.0,
251
- dtype=dtype,
252
- device=device,
253
- )[0]
254
- if is_checked_crop:
255
- out_img = images[0].resize(crop_size)
256
- human_img_orig.paste(out_img, (int(left), int(top)))
257
- img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed)
258
- results.append(img_path)
259
- else:
260
- img_path = save_output_image(images[0], base_path="outputs", base_filename='img')
261
- results.append(img_path)
262
- return results, mask_gray
263
-
264
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
265
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
266
-
267
- human_list = os.listdir(os.path.join(example_path,"human"))
268
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
269
-
270
- human_ex_list = []
271
- for ex_human in human_list_path:
272
- if "Jensen" in ex_human or "sam1 (1)" in ex_human:
273
- ex_dict = {}
274
- ex_dict['background'] = ex_human
275
- ex_dict['layers'] = None
276
- ex_dict['composite'] = None
277
- human_ex_list.append(ex_dict)
278
-
279
- image_blocks = gr.Blocks().queue()
280
- with image_blocks as demo:
281
- gr.Markdown("## V7 - IDM-VTON 👕👔👚 improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942")
282
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
283
- with gr.Row():
284
- with gr.Column():
285
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
286
- with gr.Row():
287
- category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body")
288
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
289
- with gr.Row():
290
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True)
291
-
292
- example = gr.Examples(
293
- inputs=imgs,
294
- examples_per_page=2,
295
- examples=human_ex_list
296
- )
297
-
298
- with gr.Column():
299
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
300
- with gr.Row(elem_id="prompt-container"):
301
- with gr.Row():
302
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
303
- example = gr.Examples(
304
- inputs=garm_img,
305
- examples_per_page=8,
306
- examples=garm_list_path)
307
- with gr.Column():
308
- with gr.Row():
309
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
310
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
311
- with gr.Row():
312
- btn_open_outputs = gr.Button("Open Outputs Folder")
313
- btn_open_outputs.click(fn=open_folder)
314
- with gr.Column():
315
- with gr.Row():
316
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
317
- image_gallery = gr.Gallery(label="Generated Images", show_label=True)
318
- with gr.Row():
319
- try_button = gr.Button(value="Try-on")
320
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1)
321
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1)
322
- is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True)
323
- number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1)
324
-
325
-
326
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon')
327
-
328
- image_blocks.launch(inbrowser=True,share=args.share)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apply_net.py DELETED
@@ -1,359 +0,0 @@
1
- #!/usr/bin/env python3
2
- # Copyright (c) Facebook, Inc. and its affiliates.
3
-
4
- import argparse
5
- import glob
6
- import logging
7
- import os
8
- import sys
9
- from typing import Any, ClassVar, Dict, List
10
- import torch
11
-
12
- from detectron2.config import CfgNode, get_cfg
13
- from detectron2.data.detection_utils import read_image
14
- from detectron2.engine.defaults import DefaultPredictor
15
- from detectron2.structures.instances import Instances
16
- from detectron2.utils.logger import setup_logger
17
-
18
- from densepose import add_densepose_config
19
- from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
20
- from densepose.utils.logger import verbosity_to_level
21
- from densepose.vis.base import CompoundVisualizer
22
- from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
23
- from densepose.vis.densepose_outputs_vertex import (
24
- DensePoseOutputsTextureVisualizer,
25
- DensePoseOutputsVertexVisualizer,
26
- get_texture_atlases,
27
- )
28
- from densepose.vis.densepose_results import (
29
- DensePoseResultsContourVisualizer,
30
- DensePoseResultsFineSegmentationVisualizer,
31
- DensePoseResultsUVisualizer,
32
- DensePoseResultsVVisualizer,
33
- )
34
- from densepose.vis.densepose_results_textures import (
35
- DensePoseResultsVisualizerWithTexture,
36
- get_texture_atlas,
37
- )
38
- from densepose.vis.extractor import (
39
- CompoundExtractor,
40
- DensePoseOutputsExtractor,
41
- DensePoseResultExtractor,
42
- create_extractor,
43
- )
44
-
45
- DOC = """Apply Net - a tool to print / visualize DensePose results
46
- """
47
-
48
- LOGGER_NAME = "apply_net"
49
- logger = logging.getLogger(LOGGER_NAME)
50
-
51
- _ACTION_REGISTRY: Dict[str, "Action"] = {}
52
-
53
-
54
- class Action:
55
- @classmethod
56
- def add_arguments(cls: type, parser: argparse.ArgumentParser):
57
- parser.add_argument(
58
- "-v",
59
- "--verbosity",
60
- action="count",
61
- help="Verbose mode. Multiple -v options increase the verbosity.",
62
- )
63
-
64
-
65
- def register_action(cls: type):
66
- """
67
- Decorator for action classes to automate action registration
68
- """
69
- global _ACTION_REGISTRY
70
- _ACTION_REGISTRY[cls.COMMAND] = cls
71
- return cls
72
-
73
-
74
- class InferenceAction(Action):
75
- @classmethod
76
- def add_arguments(cls: type, parser: argparse.ArgumentParser):
77
- super(InferenceAction, cls).add_arguments(parser)
78
- parser.add_argument("cfg", metavar="<config>", help="Config file")
79
- parser.add_argument("model", metavar="<model>", help="Model file")
80
- parser.add_argument(
81
- "--opts",
82
- help="Modify config options using the command-line 'KEY VALUE' pairs",
83
- default=[],
84
- nargs=argparse.REMAINDER,
85
- )
86
-
87
- @classmethod
88
- def execute(cls: type, args: argparse.Namespace, human_img):
89
- logger.info(f"Loading config from {args.cfg}")
90
- opts = []
91
- cfg = cls.setup_config(args.cfg, args.model, args, opts)
92
- logger.info(f"Loading model from {args.model}")
93
- predictor = DefaultPredictor(cfg)
94
- # logger.info(f"Loading data from {args.input}")
95
- # file_list = cls._get_input_file_list(args.input)
96
- # if len(file_list) == 0:
97
- # logger.warning(f"No input images for {args.input}")
98
- # return
99
- context = cls.create_context(args, cfg)
100
- # for file_name in file_list:
101
- # img = read_image(file_name, format="BGR") # predictor expects BGR image.
102
- with torch.no_grad():
103
- outputs = predictor(human_img)["instances"]
104
- out_pose = cls.execute_on_outputs(context, {"image": human_img}, outputs)
105
- cls.postexecute(context)
106
- return out_pose
107
-
108
- @classmethod
109
- def setup_config(
110
- cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
111
- ):
112
- cfg = get_cfg()
113
- add_densepose_config(cfg)
114
- cfg.merge_from_file(config_fpath)
115
- cfg.merge_from_list(args.opts)
116
- if opts:
117
- cfg.merge_from_list(opts)
118
- cfg.MODEL.WEIGHTS = model_fpath
119
- cfg.freeze()
120
- return cfg
121
-
122
- @classmethod
123
- def _get_input_file_list(cls: type, input_spec: str):
124
- if os.path.isdir(input_spec):
125
- file_list = [
126
- os.path.join(input_spec, fname)
127
- for fname in os.listdir(input_spec)
128
- if os.path.isfile(os.path.join(input_spec, fname))
129
- ]
130
- elif os.path.isfile(input_spec):
131
- file_list = [input_spec]
132
- else:
133
- file_list = glob.glob(input_spec)
134
- return file_list
135
-
136
-
137
- @register_action
138
- class DumpAction(InferenceAction):
139
- """
140
- Dump action that outputs results to a pickle file
141
- """
142
-
143
- COMMAND: ClassVar[str] = "dump"
144
-
145
- @classmethod
146
- def add_parser(cls: type, subparsers: argparse._SubParsersAction):
147
- parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.")
148
- cls.add_arguments(parser)
149
- parser.set_defaults(func=cls.execute)
150
-
151
- @classmethod
152
- def add_arguments(cls: type, parser: argparse.ArgumentParser):
153
- super(DumpAction, cls).add_arguments(parser)
154
- parser.add_argument(
155
- "--output",
156
- metavar="<dump_file>",
157
- default="results.pkl",
158
- help="File name to save dump to",
159
- )
160
-
161
- @classmethod
162
- def execute_on_outputs(
163
- cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
164
- ):
165
- image_fpath = entry["file_name"]
166
- logger.info(f"Processing {image_fpath}")
167
- result = {"file_name": image_fpath}
168
- if outputs.has("scores"):
169
- result["scores"] = outputs.get("scores").cpu()
170
- if outputs.has("pred_boxes"):
171
- result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu()
172
- if outputs.has("pred_densepose"):
173
- if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput):
174
- extractor = DensePoseResultExtractor()
175
- elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput):
176
- extractor = DensePoseOutputsExtractor()
177
- result["pred_densepose"] = extractor(outputs)[0]
178
- context["results"].append(result)
179
-
180
- @classmethod
181
- def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode):
182
- context = {"results": [], "out_fname": args.output}
183
- return context
184
-
185
- @classmethod
186
- def postexecute(cls: type, context: Dict[str, Any]):
187
- out_fname = context["out_fname"]
188
- out_dir = os.path.dirname(out_fname)
189
- if len(out_dir) > 0 and not os.path.exists(out_dir):
190
- os.makedirs(out_dir)
191
- with open(out_fname, "wb") as hFile:
192
- torch.save(context["results"], hFile)
193
- logger.info(f"Output saved to {out_fname}")
194
-
195
-
196
- @register_action
197
- class ShowAction(InferenceAction):
198
- """
199
- Show action that visualizes selected entries on an image
200
- """
201
-
202
- COMMAND: ClassVar[str] = "show"
203
- VISUALIZERS: ClassVar[Dict[str, object]] = {
204
- "dp_contour": DensePoseResultsContourVisualizer,
205
- "dp_segm": DensePoseResultsFineSegmentationVisualizer,
206
- "dp_u": DensePoseResultsUVisualizer,
207
- "dp_v": DensePoseResultsVVisualizer,
208
- "dp_iuv_texture": DensePoseResultsVisualizerWithTexture,
209
- "dp_cse_texture": DensePoseOutputsTextureVisualizer,
210
- "dp_vertex": DensePoseOutputsVertexVisualizer,
211
- "bbox": ScoredBoundingBoxVisualizer,
212
- }
213
-
214
- @classmethod
215
- def add_parser(cls: type, subparsers: argparse._SubParsersAction):
216
- parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
217
- cls.add_arguments(parser)
218
- parser.set_defaults(func=cls.execute)
219
-
220
- @classmethod
221
- def add_arguments(cls: type, parser: argparse.ArgumentParser):
222
- super(ShowAction, cls).add_arguments(parser)
223
- parser.add_argument(
224
- "visualizations",
225
- metavar="<visualizations>",
226
- help="Comma separated list of visualizations, possible values: "
227
- "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
228
- )
229
- parser.add_argument(
230
- "--min_score",
231
- metavar="<score>",
232
- default=0.8,
233
- type=float,
234
- help="Minimum detection score to visualize",
235
- )
236
- parser.add_argument(
237
- "--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold"
238
- )
239
- parser.add_argument(
240
- "--texture_atlas",
241
- metavar="<texture_atlas>",
242
- default=None,
243
- help="Texture atlas file (for IUV texture transfer)",
244
- )
245
- parser.add_argument(
246
- "--texture_atlases_map",
247
- metavar="<texture_atlases_map>",
248
- default=None,
249
- help="JSON string of a dict containing texture atlas files for each mesh",
250
- )
251
- parser.add_argument(
252
- "--output",
253
- metavar="<image_file>",
254
- default="outputres.png",
255
- help="File name to save output to",
256
- )
257
-
258
- @classmethod
259
- def setup_config(
260
- cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
261
- ):
262
- opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
263
- opts.append(str(args.min_score))
264
- if args.nms_thresh is not None:
265
- opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST")
266
- opts.append(str(args.nms_thresh))
267
- cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts)
268
- return cfg
269
-
270
- @classmethod
271
- def execute_on_outputs(
272
- cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
273
- ):
274
- import cv2
275
- import numpy as np
276
- visualizer = context["visualizer"]
277
- extractor = context["extractor"]
278
- # image_fpath = entry["file_name"]
279
- # logger.info(f"Processing {image_fpath}")
280
- image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
281
- image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
282
- data = extractor(outputs)
283
- image_vis = visualizer.visualize(image, data)
284
-
285
- return image_vis
286
- entry_idx = context["entry_idx"] + 1
287
- out_fname = './image-densepose/' + image_fpath.split('/')[-1]
288
- out_dir = './image-densepose'
289
- out_dir = os.path.dirname(out_fname)
290
- if len(out_dir) > 0 and not os.path.exists(out_dir):
291
- os.makedirs(out_dir)
292
- cv2.imwrite(out_fname, image_vis)
293
- logger.info(f"Output saved to {out_fname}")
294
- context["entry_idx"] += 1
295
-
296
- @classmethod
297
- def postexecute(cls: type, context: Dict[str, Any]):
298
- pass
299
- # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/DressCode/upper_body/images dp_segm -v --opts MODEL.DEVICE cpu
300
-
301
- @classmethod
302
- def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
303
- base, ext = os.path.splitext(fname_base)
304
- return base + ".{0:04d}".format(entry_idx) + ext
305
-
306
- @classmethod
307
- def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]:
308
- vis_specs = args.visualizations.split(",")
309
- visualizers = []
310
- extractors = []
311
- for vis_spec in vis_specs:
312
- texture_atlas = get_texture_atlas(args.texture_atlas)
313
- texture_atlases_dict = get_texture_atlases(args.texture_atlases_map)
314
- vis = cls.VISUALIZERS[vis_spec](
315
- cfg=cfg,
316
- texture_atlas=texture_atlas,
317
- texture_atlases_dict=texture_atlases_dict,
318
- )
319
- visualizers.append(vis)
320
- extractor = create_extractor(vis)
321
- extractors.append(extractor)
322
- visualizer = CompoundVisualizer(visualizers)
323
- extractor = CompoundExtractor(extractors)
324
- context = {
325
- "extractor": extractor,
326
- "visualizer": visualizer,
327
- "out_fname": args.output,
328
- "entry_idx": 0,
329
- }
330
- return context
331
-
332
-
333
- def create_argument_parser() -> argparse.ArgumentParser:
334
- parser = argparse.ArgumentParser(
335
- description=DOC,
336
- formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
337
- )
338
- parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
339
- subparsers = parser.add_subparsers(title="Actions")
340
- for _, action in _ACTION_REGISTRY.items():
341
- action.add_parser(subparsers)
342
- return parser
343
-
344
-
345
- def main():
346
- parser = create_argument_parser()
347
- args = parser.parse_args()
348
- verbosity = getattr(args, "verbosity", None)
349
- global logger
350
- logger = setup_logger(name=LOGGER_NAME)
351
- logger.setLevel(verbosity_to_level(verbosity))
352
- args.func(args)
353
-
354
-
355
- if __name__ == "__main__":
356
- main()
357
-
358
-
359
- # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/Dresscode/dresses/humanonly dp_segm -v --opts MODEL.DEVICE cuda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ckpt/densepose/model_final_162be9.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91
3
- size 255757821
 
 
 
 
ckpt/humanparsing/parsing_atr.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:04c7d1d070d0e0ae943d86b18cb5aaaea9e278d97462e9cfb270cbbe4cd977f4
3
- size 266859305
 
 
 
 
ckpt/humanparsing/parsing_lip.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8436e1dae96e2601c373d1ace29c8f0978b16357d9038c17a8ba756cca376dbc
3
- size 266863411
 
 
 
 
ckpt/openpose/.DS_Store DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e953475b1378e1d0566f8ad8de20077ce8610ae23fb2b5f8bfe57104aca8e911
3
- size 6148
 
 
 
 
ckpt/openpose/ckpts/body_pose_model.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:25a948c16078b0f08e236bda51a385d855ef4c153598947c28c0d47ed94bb746
3
- size 209267595
 
 
 
 
configs/Base-DensePose-RCNN-FPN.yaml DELETED
@@ -1,48 +0,0 @@
1
- VERSION: 2
2
- MODEL:
3
- META_ARCHITECTURE: "GeneralizedRCNN"
4
- BACKBONE:
5
- NAME: "build_resnet_fpn_backbone"
6
- RESNETS:
7
- OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
- FPN:
9
- IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
- ANCHOR_GENERATOR:
11
- SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
- ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
- RPN:
14
- IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
- PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
- PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
- # Detectron1 uses 2000 proposals per-batch,
18
- # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
- # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
- POST_NMS_TOPK_TRAIN: 1000
21
- POST_NMS_TOPK_TEST: 1000
22
-
23
- DENSEPOSE_ON: True
24
- ROI_HEADS:
25
- NAME: "DensePoseROIHeads"
26
- IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
- NUM_CLASSES: 1
28
- ROI_BOX_HEAD:
29
- NAME: "FastRCNNConvFCHead"
30
- NUM_FC: 2
31
- POOLER_RESOLUTION: 7
32
- POOLER_SAMPLING_RATIO: 2
33
- POOLER_TYPE: "ROIAlign"
34
- ROI_DENSEPOSE_HEAD:
35
- NAME: "DensePoseV1ConvXHead"
36
- POOLER_TYPE: "ROIAlign"
37
- NUM_COARSE_SEGM_CHANNELS: 2
38
- DATASETS:
39
- TRAIN: ("densepose_coco_2014_train", "densepose_coco_2014_valminusminival")
40
- TEST: ("densepose_coco_2014_minival",)
41
- SOLVER:
42
- IMS_PER_BATCH: 16
43
- BASE_LR: 0.01
44
- STEPS: (60000, 80000)
45
- MAX_ITER: 90000
46
- WARMUP_FACTOR: 0.1
47
- INPUT:
48
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w"
4
- BACKBONE:
5
- NAME: "build_hrfpn_backbone"
6
- RPN:
7
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
- ROI_HEADS:
9
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
13
- CLIP_GRADIENTS:
14
- ENABLED: True
15
- CLIP_TYPE: "norm"
16
- BASE_LR: 0.03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml DELETED
@@ -1,23 +0,0 @@
1
- _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33ck0gvo5jfoWBOPo"
4
- BACKBONE:
5
- NAME: "build_hrfpn_backbone"
6
- RPN:
7
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
- ROI_HEADS:
9
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
- HRNET:
11
- STAGE2:
12
- NUM_CHANNELS: [40, 80]
13
- STAGE3:
14
- NUM_CHANNELS: [40, 80, 160]
15
- STAGE4:
16
- NUM_CHANNELS: [40, 80, 160, 320]
17
- SOLVER:
18
- MAX_ITER: 130000
19
- STEPS: (100000, 120000)
20
- CLIP_GRADIENTS:
21
- ENABLED: True
22
- CLIP_TYPE: "norm"
23
- BASE_LR: 0.03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml DELETED
@@ -1,23 +0,0 @@
1
- _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dKvqI6pBZlifgJk"
4
- BACKBONE:
5
- NAME: "build_hrfpn_backbone"
6
- RPN:
7
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
- ROI_HEADS:
9
- IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
- HRNET:
11
- STAGE2:
12
- NUM_CHANNELS: [48, 96]
13
- STAGE3:
14
- NUM_CHANNELS: [48, 96, 192]
15
- STAGE4:
16
- NUM_CHANNELS: [48, 96, 192, 384]
17
- SOLVER:
18
- MAX_ITER: 130000
19
- STEPS: (100000, 120000)
20
- CLIP_GRADIENTS:
21
- ENABLED: True
22
- CLIP_TYPE: "norm"
23
- BASE_LR: 0.03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/Base-DensePose-RCNN-FPN-Human.yaml DELETED
@@ -1,20 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- ROI_DENSEPOSE_HEAD:
4
- CSE:
5
- EMBEDDERS:
6
- "smpl_27554":
7
- TYPE: vertex_feature
8
- NUM_VERTICES: 27554
9
- FEATURE_DIM: 256
10
- FEATURES_TRAINABLE: False
11
- IS_TRAINABLE: True
12
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
13
- DATASETS:
14
- TRAIN:
15
- - "densepose_coco_2014_train_cse"
16
- - "densepose_coco_2014_valminusminival_cse"
17
- TEST:
18
- - "densepose_coco_2014_minival_cse"
19
- CLASS_TO_MESH_NAME_MAPPING:
20
- "0": "smpl_27554"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/Base-DensePose-RCNN-FPN.yaml DELETED
@@ -1,60 +0,0 @@
1
- VERSION: 2
2
- MODEL:
3
- META_ARCHITECTURE: "GeneralizedRCNN"
4
- BACKBONE:
5
- NAME: "build_resnet_fpn_backbone"
6
- RESNETS:
7
- OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
- FPN:
9
- IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
- ANCHOR_GENERATOR:
11
- SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
- ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
- RPN:
14
- IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
- PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
- PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
- # Detectron1 uses 2000 proposals per-batch,
18
- # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
- # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
- POST_NMS_TOPK_TRAIN: 1000
21
- POST_NMS_TOPK_TEST: 1000
22
-
23
- DENSEPOSE_ON: True
24
- ROI_HEADS:
25
- NAME: "DensePoseROIHeads"
26
- IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
- NUM_CLASSES: 1
28
- ROI_BOX_HEAD:
29
- NAME: "FastRCNNConvFCHead"
30
- NUM_FC: 2
31
- POOLER_RESOLUTION: 7
32
- POOLER_SAMPLING_RATIO: 2
33
- POOLER_TYPE: "ROIAlign"
34
- ROI_DENSEPOSE_HEAD:
35
- NAME: "DensePoseV1ConvXHead"
36
- POOLER_TYPE: "ROIAlign"
37
- NUM_COARSE_SEGM_CHANNELS: 2
38
- PREDICTOR_NAME: "DensePoseEmbeddingPredictor"
39
- LOSS_NAME: "DensePoseCseLoss"
40
- CSE:
41
- # embedding loss, possible values:
42
- # - "EmbeddingLoss"
43
- # - "SoftEmbeddingLoss"
44
- EMBED_LOSS_NAME: "EmbeddingLoss"
45
- SOLVER:
46
- IMS_PER_BATCH: 16
47
- BASE_LR: 0.01
48
- STEPS: (60000, 80000)
49
- MAX_ITER: 90000
50
- WARMUP_FACTOR: 0.1
51
- CLIP_GRADIENTS:
52
- CLIP_TYPE: norm
53
- CLIP_VALUE: 1.0
54
- ENABLED: true
55
- NORM_TYPE: 2.0
56
- INPUT:
57
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
58
- DENSEPOSE_EVALUATION:
59
- TYPE: cse
60
- STORAGE: file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "EmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseV1ConvXHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "EmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseV1ConvXHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "EmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseV1ConvXHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "EmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml DELETED
@@ -1,133 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 1
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- EMBEDDERS:
16
- "cat_7466":
17
- TYPE: vertex_feature
18
- NUM_VERTICES: 7466
19
- FEATURE_DIM: 256
20
- FEATURES_TRAINABLE: False
21
- IS_TRAINABLE: True
22
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
- "dog_7466":
24
- TYPE: vertex_feature
25
- NUM_VERTICES: 7466
26
- FEATURE_DIM: 256
27
- FEATURES_TRAINABLE: False
28
- IS_TRAINABLE: True
29
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
- "sheep_5004":
31
- TYPE: vertex_feature
32
- NUM_VERTICES: 5004
33
- FEATURE_DIM: 256
34
- FEATURES_TRAINABLE: False
35
- IS_TRAINABLE: True
36
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
- "horse_5004":
38
- TYPE: vertex_feature
39
- NUM_VERTICES: 5004
40
- FEATURE_DIM: 256
41
- FEATURES_TRAINABLE: False
42
- IS_TRAINABLE: True
43
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
- "zebra_5002":
45
- TYPE: vertex_feature
46
- NUM_VERTICES: 5002
47
- FEATURE_DIM: 256
48
- FEATURES_TRAINABLE: False
49
- IS_TRAINABLE: True
50
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
- "giraffe_5002":
52
- TYPE: vertex_feature
53
- NUM_VERTICES: 5002
54
- FEATURE_DIM: 256
55
- FEATURES_TRAINABLE: False
56
- IS_TRAINABLE: True
57
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
- "elephant_5002":
59
- TYPE: vertex_feature
60
- NUM_VERTICES: 5002
61
- FEATURE_DIM: 256
62
- FEATURES_TRAINABLE: False
63
- IS_TRAINABLE: True
64
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
- "cow_5002":
66
- TYPE: vertex_feature
67
- NUM_VERTICES: 5002
68
- FEATURE_DIM: 256
69
- FEATURES_TRAINABLE: False
70
- IS_TRAINABLE: True
71
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
- "bear_4936":
73
- TYPE: vertex_feature
74
- NUM_VERTICES: 4936
75
- FEATURE_DIM: 256
76
- FEATURES_TRAINABLE: False
77
- IS_TRAINABLE: True
78
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
- DATASETS:
80
- TRAIN:
81
- - "densepose_lvis_v1_ds2_train_v1"
82
- TEST:
83
- - "densepose_lvis_v1_ds2_val_v1"
84
- WHITELISTED_CATEGORIES:
85
- "densepose_lvis_v1_ds2_train_v1":
86
- - 943 # sheep
87
- - 1202 # zebra
88
- - 569 # horse
89
- - 496 # giraffe
90
- - 422 # elephant
91
- - 80 # cow
92
- - 76 # bear
93
- - 225 # cat
94
- - 378 # dog
95
- "densepose_lvis_v1_ds2_val_v1":
96
- - 943 # sheep
97
- - 1202 # zebra
98
- - 569 # horse
99
- - 496 # giraffe
100
- - 422 # elephant
101
- - 80 # cow
102
- - 76 # bear
103
- - 225 # cat
104
- - 378 # dog
105
- CATEGORY_MAPS:
106
- "densepose_lvis_v1_ds2_train_v1":
107
- "1202": 943 # zebra -> sheep
108
- "569": 943 # horse -> sheep
109
- "496": 943 # giraffe -> sheep
110
- "422": 943 # elephant -> sheep
111
- "80": 943 # cow -> sheep
112
- "76": 943 # bear -> sheep
113
- "225": 943 # cat -> sheep
114
- "378": 943 # dog -> sheep
115
- "densepose_lvis_v1_ds2_val_v1":
116
- "1202": 943 # zebra -> sheep
117
- "569": 943 # horse -> sheep
118
- "496": 943 # giraffe -> sheep
119
- "422": 943 # elephant -> sheep
120
- "80": 943 # cow -> sheep
121
- "76": 943 # bear -> sheep
122
- "225": 943 # cat -> sheep
123
- "378": 943 # dog -> sheep
124
- CLASS_TO_MESH_NAME_MAPPING:
125
- # Note: different classes are mapped to a single class
126
- # mesh is chosen based on GT data, so this is just some
127
- # value which has no particular meaning
128
- "0": "sheep_5004"
129
- SOLVER:
130
- MAX_ITER: 16000
131
- STEPS: (12000, 14000)
132
- DENSEPOSE_EVALUATION:
133
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml DELETED
@@ -1,133 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 1
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- EMBEDDERS:
16
- "cat_5001":
17
- TYPE: vertex_feature
18
- NUM_VERTICES: 5001
19
- FEATURE_DIM: 256
20
- FEATURES_TRAINABLE: False
21
- IS_TRAINABLE: True
22
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
23
- "dog_5002":
24
- TYPE: vertex_feature
25
- NUM_VERTICES: 5002
26
- FEATURE_DIM: 256
27
- FEATURES_TRAINABLE: False
28
- IS_TRAINABLE: True
29
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
30
- "sheep_5004":
31
- TYPE: vertex_feature
32
- NUM_VERTICES: 5004
33
- FEATURE_DIM: 256
34
- FEATURES_TRAINABLE: False
35
- IS_TRAINABLE: True
36
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
- "horse_5004":
38
- TYPE: vertex_feature
39
- NUM_VERTICES: 5004
40
- FEATURE_DIM: 256
41
- FEATURES_TRAINABLE: False
42
- IS_TRAINABLE: True
43
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
- "zebra_5002":
45
- TYPE: vertex_feature
46
- NUM_VERTICES: 5002
47
- FEATURE_DIM: 256
48
- FEATURES_TRAINABLE: False
49
- IS_TRAINABLE: True
50
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
- "giraffe_5002":
52
- TYPE: vertex_feature
53
- NUM_VERTICES: 5002
54
- FEATURE_DIM: 256
55
- FEATURES_TRAINABLE: False
56
- IS_TRAINABLE: True
57
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
- "elephant_5002":
59
- TYPE: vertex_feature
60
- NUM_VERTICES: 5002
61
- FEATURE_DIM: 256
62
- FEATURES_TRAINABLE: False
63
- IS_TRAINABLE: True
64
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
- "cow_5002":
66
- TYPE: vertex_feature
67
- NUM_VERTICES: 5002
68
- FEATURE_DIM: 256
69
- FEATURES_TRAINABLE: False
70
- IS_TRAINABLE: True
71
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
- "bear_4936":
73
- TYPE: vertex_feature
74
- NUM_VERTICES: 4936
75
- FEATURE_DIM: 256
76
- FEATURES_TRAINABLE: False
77
- IS_TRAINABLE: True
78
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
- DATASETS:
80
- TRAIN:
81
- - "densepose_lvis_v1_ds1_train_v1"
82
- TEST:
83
- - "densepose_lvis_v1_ds1_val_v1"
84
- WHITELISTED_CATEGORIES:
85
- "densepose_lvis_v1_ds1_train_v1":
86
- - 943 # sheep
87
- - 1202 # zebra
88
- - 569 # horse
89
- - 496 # giraffe
90
- - 422 # elephant
91
- - 80 # cow
92
- - 76 # bear
93
- - 225 # cat
94
- - 378 # dog
95
- "densepose_lvis_v1_ds1_val_v1":
96
- - 943 # sheep
97
- - 1202 # zebra
98
- - 569 # horse
99
- - 496 # giraffe
100
- - 422 # elephant
101
- - 80 # cow
102
- - 76 # bear
103
- - 225 # cat
104
- - 378 # dog
105
- CATEGORY_MAPS:
106
- "densepose_lvis_v1_ds1_train_v1":
107
- "1202": 943 # zebra -> sheep
108
- "569": 943 # horse -> sheep
109
- "496": 943 # giraffe -> sheep
110
- "422": 943 # elephant -> sheep
111
- "80": 943 # cow -> sheep
112
- "76": 943 # bear -> sheep
113
- "225": 943 # cat -> sheep
114
- "378": 943 # dog -> sheep
115
- "densepose_lvis_v1_ds1_val_v1":
116
- "1202": 943 # zebra -> sheep
117
- "569": 943 # horse -> sheep
118
- "496": 943 # giraffe -> sheep
119
- "422": 943 # elephant -> sheep
120
- "80": 943 # cow -> sheep
121
- "76": 943 # bear -> sheep
122
- "225": 943 # cat -> sheep
123
- "378": 943 # dog -> sheep
124
- CLASS_TO_MESH_NAME_MAPPING:
125
- # Note: different classes are mapped to a single class
126
- # mesh is chosen based on GT data, so this is just some
127
- # value which has no particular meaning
128
- "0": "sheep_5004"
129
- SOLVER:
130
- MAX_ITER: 4000
131
- STEPS: (3000, 3500)
132
- DENSEPOSE_EVALUATION:
133
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml DELETED
@@ -1,119 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- EMBEDDERS:
16
- "cat_7466":
17
- TYPE: vertex_feature
18
- NUM_VERTICES: 7466
19
- FEATURE_DIM: 256
20
- FEATURES_TRAINABLE: False
21
- IS_TRAINABLE: True
22
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
- "dog_7466":
24
- TYPE: vertex_feature
25
- NUM_VERTICES: 7466
26
- FEATURE_DIM: 256
27
- FEATURES_TRAINABLE: False
28
- IS_TRAINABLE: True
29
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
- "sheep_5004":
31
- TYPE: vertex_feature
32
- NUM_VERTICES: 5004
33
- FEATURE_DIM: 256
34
- FEATURES_TRAINABLE: False
35
- IS_TRAINABLE: True
36
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
- "horse_5004":
38
- TYPE: vertex_feature
39
- NUM_VERTICES: 5004
40
- FEATURE_DIM: 256
41
- FEATURES_TRAINABLE: False
42
- IS_TRAINABLE: True
43
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
- "zebra_5002":
45
- TYPE: vertex_feature
46
- NUM_VERTICES: 5002
47
- FEATURE_DIM: 256
48
- FEATURES_TRAINABLE: False
49
- IS_TRAINABLE: True
50
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
- "giraffe_5002":
52
- TYPE: vertex_feature
53
- NUM_VERTICES: 5002
54
- FEATURE_DIM: 256
55
- FEATURES_TRAINABLE: False
56
- IS_TRAINABLE: True
57
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
- "elephant_5002":
59
- TYPE: vertex_feature
60
- NUM_VERTICES: 5002
61
- FEATURE_DIM: 256
62
- FEATURES_TRAINABLE: False
63
- IS_TRAINABLE: True
64
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
- "cow_5002":
66
- TYPE: vertex_feature
67
- NUM_VERTICES: 5002
68
- FEATURE_DIM: 256
69
- FEATURES_TRAINABLE: False
70
- IS_TRAINABLE: True
71
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
- "bear_4936":
73
- TYPE: vertex_feature
74
- NUM_VERTICES: 4936
75
- FEATURE_DIM: 256
76
- FEATURES_TRAINABLE: False
77
- IS_TRAINABLE: True
78
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
- DATASETS:
80
- TRAIN:
81
- - "densepose_lvis_v1_ds2_train_v1"
82
- TEST:
83
- - "densepose_lvis_v1_ds2_val_v1"
84
- WHITELISTED_CATEGORIES:
85
- "densepose_lvis_v1_ds2_train_v1":
86
- - 943 # sheep
87
- - 1202 # zebra
88
- - 569 # horse
89
- - 496 # giraffe
90
- - 422 # elephant
91
- - 80 # cow
92
- - 76 # bear
93
- - 225 # cat
94
- - 378 # dog
95
- "densepose_lvis_v1_ds2_val_v1":
96
- - 943 # sheep
97
- - 1202 # zebra
98
- - 569 # horse
99
- - 496 # giraffe
100
- - 422 # elephant
101
- - 80 # cow
102
- - 76 # bear
103
- - 225 # cat
104
- - 378 # dog
105
- CLASS_TO_MESH_NAME_MAPPING:
106
- "0": "bear_4936"
107
- "1": "cow_5002"
108
- "2": "cat_7466"
109
- "3": "dog_7466"
110
- "4": "elephant_5002"
111
- "5": "giraffe_5002"
112
- "6": "horse_5004"
113
- "7": "sheep_5004"
114
- "8": "zebra_5002"
115
- SOLVER:
116
- MAX_ITER: 16000
117
- STEPS: (12000, 14000)
118
- DENSEPOSE_EVALUATION:
119
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml DELETED
@@ -1,121 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- PIX_TO_SHAPE_CYCLE_LOSS:
16
- ENABLED: True
17
- EMBEDDERS:
18
- "cat_7466":
19
- TYPE: vertex_feature
20
- NUM_VERTICES: 7466
21
- FEATURE_DIM: 256
22
- FEATURES_TRAINABLE: False
23
- IS_TRAINABLE: True
24
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
25
- "dog_7466":
26
- TYPE: vertex_feature
27
- NUM_VERTICES: 7466
28
- FEATURE_DIM: 256
29
- FEATURES_TRAINABLE: False
30
- IS_TRAINABLE: True
31
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
32
- "sheep_5004":
33
- TYPE: vertex_feature
34
- NUM_VERTICES: 5004
35
- FEATURE_DIM: 256
36
- FEATURES_TRAINABLE: False
37
- IS_TRAINABLE: True
38
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
39
- "horse_5004":
40
- TYPE: vertex_feature
41
- NUM_VERTICES: 5004
42
- FEATURE_DIM: 256
43
- FEATURES_TRAINABLE: False
44
- IS_TRAINABLE: True
45
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
46
- "zebra_5002":
47
- TYPE: vertex_feature
48
- NUM_VERTICES: 5002
49
- FEATURE_DIM: 256
50
- FEATURES_TRAINABLE: False
51
- IS_TRAINABLE: True
52
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
53
- "giraffe_5002":
54
- TYPE: vertex_feature
55
- NUM_VERTICES: 5002
56
- FEATURE_DIM: 256
57
- FEATURES_TRAINABLE: False
58
- IS_TRAINABLE: True
59
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
60
- "elephant_5002":
61
- TYPE: vertex_feature
62
- NUM_VERTICES: 5002
63
- FEATURE_DIM: 256
64
- FEATURES_TRAINABLE: False
65
- IS_TRAINABLE: True
66
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
67
- "cow_5002":
68
- TYPE: vertex_feature
69
- NUM_VERTICES: 5002
70
- FEATURE_DIM: 256
71
- FEATURES_TRAINABLE: False
72
- IS_TRAINABLE: True
73
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
74
- "bear_4936":
75
- TYPE: vertex_feature
76
- NUM_VERTICES: 4936
77
- FEATURE_DIM: 256
78
- FEATURES_TRAINABLE: False
79
- IS_TRAINABLE: True
80
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
81
- DATASETS:
82
- TRAIN:
83
- - "densepose_lvis_v1_ds2_train_v1"
84
- TEST:
85
- - "densepose_lvis_v1_ds2_val_v1"
86
- WHITELISTED_CATEGORIES:
87
- "densepose_lvis_v1_ds2_train_v1":
88
- - 943 # sheep
89
- - 1202 # zebra
90
- - 569 # horse
91
- - 496 # giraffe
92
- - 422 # elephant
93
- - 80 # cow
94
- - 76 # bear
95
- - 225 # cat
96
- - 378 # dog
97
- "densepose_lvis_v1_ds2_val_v1":
98
- - 943 # sheep
99
- - 1202 # zebra
100
- - 569 # horse
101
- - 496 # giraffe
102
- - 422 # elephant
103
- - 80 # cow
104
- - 76 # bear
105
- - 225 # cat
106
- - 378 # dog
107
- CLASS_TO_MESH_NAME_MAPPING:
108
- "0": "bear_4936"
109
- "1": "cow_5002"
110
- "2": "cat_7466"
111
- "3": "dog_7466"
112
- "4": "elephant_5002"
113
- "5": "giraffe_5002"
114
- "6": "horse_5004"
115
- "7": "sheep_5004"
116
- "8": "zebra_5002"
117
- SOLVER:
118
- MAX_ITER: 16000
119
- STEPS: (12000, 14000)
120
- DENSEPOSE_EVALUATION:
121
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml DELETED
@@ -1,138 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/267687159/model_final_354e61.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- SHAPE_TO_SHAPE_CYCLE_LOSS:
16
- ENABLED: True
17
- EMBEDDERS:
18
- "cat_7466":
19
- TYPE: vertex_feature
20
- NUM_VERTICES: 7466
21
- FEATURE_DIM: 256
22
- FEATURES_TRAINABLE: False
23
- IS_TRAINABLE: True
24
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
25
- "dog_7466":
26
- TYPE: vertex_feature
27
- NUM_VERTICES: 7466
28
- FEATURE_DIM: 256
29
- FEATURES_TRAINABLE: False
30
- IS_TRAINABLE: True
31
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
32
- "sheep_5004":
33
- TYPE: vertex_feature
34
- NUM_VERTICES: 5004
35
- FEATURE_DIM: 256
36
- FEATURES_TRAINABLE: False
37
- IS_TRAINABLE: True
38
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
39
- "horse_5004":
40
- TYPE: vertex_feature
41
- NUM_VERTICES: 5004
42
- FEATURE_DIM: 256
43
- FEATURES_TRAINABLE: False
44
- IS_TRAINABLE: True
45
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
46
- "zebra_5002":
47
- TYPE: vertex_feature
48
- NUM_VERTICES: 5002
49
- FEATURE_DIM: 256
50
- FEATURES_TRAINABLE: False
51
- IS_TRAINABLE: True
52
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
53
- "giraffe_5002":
54
- TYPE: vertex_feature
55
- NUM_VERTICES: 5002
56
- FEATURE_DIM: 256
57
- FEATURES_TRAINABLE: False
58
- IS_TRAINABLE: True
59
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
60
- "elephant_5002":
61
- TYPE: vertex_feature
62
- NUM_VERTICES: 5002
63
- FEATURE_DIM: 256
64
- FEATURES_TRAINABLE: False
65
- IS_TRAINABLE: True
66
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
67
- "cow_5002":
68
- TYPE: vertex_feature
69
- NUM_VERTICES: 5002
70
- FEATURE_DIM: 256
71
- FEATURES_TRAINABLE: False
72
- IS_TRAINABLE: True
73
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
74
- "bear_4936":
75
- TYPE: vertex_feature
76
- NUM_VERTICES: 4936
77
- FEATURE_DIM: 256
78
- FEATURES_TRAINABLE: False
79
- IS_TRAINABLE: True
80
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
81
- "smpl_27554":
82
- TYPE: vertex_feature
83
- NUM_VERTICES: 27554
84
- FEATURE_DIM: 256
85
- FEATURES_TRAINABLE: False
86
- IS_TRAINABLE: True
87
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
88
- DATASETS:
89
- TRAIN:
90
- - "densepose_lvis_v1_ds2_train_v1"
91
- TEST:
92
- - "densepose_lvis_v1_ds2_val_v1"
93
- WHITELISTED_CATEGORIES:
94
- "densepose_lvis_v1_ds2_train_v1":
95
- - 943 # sheep
96
- - 1202 # zebra
97
- - 569 # horse
98
- - 496 # giraffe
99
- - 422 # elephant
100
- - 80 # cow
101
- - 76 # bear
102
- - 225 # cat
103
- - 378 # dog
104
- "densepose_lvis_v1_ds2_val_v1":
105
- - 943 # sheep
106
- - 1202 # zebra
107
- - 569 # horse
108
- - 496 # giraffe
109
- - 422 # elephant
110
- - 80 # cow
111
- - 76 # bear
112
- - 225 # cat
113
- - 378 # dog
114
- CLASS_TO_MESH_NAME_MAPPING:
115
- "0": "bear_4936"
116
- "1": "cow_5002"
117
- "2": "cat_7466"
118
- "3": "dog_7466"
119
- "4": "elephant_5002"
120
- "5": "giraffe_5002"
121
- "6": "horse_5004"
122
- "7": "sheep_5004"
123
- "8": "zebra_5002"
124
- SOLVER:
125
- MAX_ITER: 16000
126
- STEPS: (12000, 14000)
127
- DENSEPOSE_EVALUATION:
128
- EVALUATE_MESH_ALIGNMENT: True
129
- MESH_ALIGNMENT_MESH_NAMES:
130
- - bear_4936
131
- - cow_5002
132
- - cat_7466
133
- - dog_7466
134
- - elephant_5002
135
- - giraffe_5002
136
- - horse_5004
137
- - sheep_5004
138
- - zebra_5002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml DELETED
@@ -1,119 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- EMBEDDERS:
16
- "cat_7466":
17
- TYPE: vertex_feature
18
- NUM_VERTICES: 7466
19
- FEATURE_DIM: 256
20
- FEATURES_TRAINABLE: False
21
- IS_TRAINABLE: True
22
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
- "dog_7466":
24
- TYPE: vertex_feature
25
- NUM_VERTICES: 7466
26
- FEATURE_DIM: 256
27
- FEATURES_TRAINABLE: False
28
- IS_TRAINABLE: True
29
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
- "sheep_5004":
31
- TYPE: vertex_feature
32
- NUM_VERTICES: 5004
33
- FEATURE_DIM: 256
34
- FEATURES_TRAINABLE: False
35
- IS_TRAINABLE: True
36
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
- "horse_5004":
38
- TYPE: vertex_feature
39
- NUM_VERTICES: 5004
40
- FEATURE_DIM: 256
41
- FEATURES_TRAINABLE: False
42
- IS_TRAINABLE: True
43
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
- "zebra_5002":
45
- TYPE: vertex_feature
46
- NUM_VERTICES: 5002
47
- FEATURE_DIM: 256
48
- FEATURES_TRAINABLE: False
49
- IS_TRAINABLE: True
50
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
- "giraffe_5002":
52
- TYPE: vertex_feature
53
- NUM_VERTICES: 5002
54
- FEATURE_DIM: 256
55
- FEATURES_TRAINABLE: False
56
- IS_TRAINABLE: True
57
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
- "elephant_5002":
59
- TYPE: vertex_feature
60
- NUM_VERTICES: 5002
61
- FEATURE_DIM: 256
62
- FEATURES_TRAINABLE: False
63
- IS_TRAINABLE: True
64
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
- "cow_5002":
66
- TYPE: vertex_feature
67
- NUM_VERTICES: 5002
68
- FEATURE_DIM: 256
69
- FEATURES_TRAINABLE: False
70
- IS_TRAINABLE: True
71
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
- "bear_4936":
73
- TYPE: vertex_feature
74
- NUM_VERTICES: 4936
75
- FEATURE_DIM: 256
76
- FEATURES_TRAINABLE: False
77
- IS_TRAINABLE: True
78
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
- DATASETS:
80
- TRAIN:
81
- - "densepose_lvis_v1_ds2_train_v1"
82
- TEST:
83
- - "densepose_lvis_v1_ds2_val_v1"
84
- WHITELISTED_CATEGORIES:
85
- "densepose_lvis_v1_ds2_train_v1":
86
- - 943 # sheep
87
- - 1202 # zebra
88
- - 569 # horse
89
- - 496 # giraffe
90
- - 422 # elephant
91
- - 80 # cow
92
- - 76 # bear
93
- - 225 # cat
94
- - 378 # dog
95
- "densepose_lvis_v1_ds2_val_v1":
96
- - 943 # sheep
97
- - 1202 # zebra
98
- - 569 # horse
99
- - 496 # giraffe
100
- - 422 # elephant
101
- - 80 # cow
102
- - 76 # bear
103
- - 225 # cat
104
- - 378 # dog
105
- CLASS_TO_MESH_NAME_MAPPING:
106
- "0": "bear_4936"
107
- "1": "cow_5002"
108
- "2": "cat_7466"
109
- "3": "dog_7466"
110
- "4": "elephant_5002"
111
- "5": "giraffe_5002"
112
- "6": "horse_5004"
113
- "7": "sheep_5004"
114
- "8": "zebra_5002"
115
- SOLVER:
116
- MAX_ITER: 16000
117
- STEPS: (12000, 14000)
118
- DENSEPOSE_EVALUATION:
119
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml DELETED
@@ -1,119 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
- EMBEDDERS:
16
- "cat_5001":
17
- TYPE: vertex_feature
18
- NUM_VERTICES: 5001
19
- FEATURE_DIM: 256
20
- FEATURES_TRAINABLE: False
21
- IS_TRAINABLE: True
22
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
23
- "dog_5002":
24
- TYPE: vertex_feature
25
- NUM_VERTICES: 5002
26
- FEATURE_DIM: 256
27
- FEATURES_TRAINABLE: False
28
- IS_TRAINABLE: True
29
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
30
- "sheep_5004":
31
- TYPE: vertex_feature
32
- NUM_VERTICES: 5004
33
- FEATURE_DIM: 256
34
- FEATURES_TRAINABLE: False
35
- IS_TRAINABLE: True
36
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
- "horse_5004":
38
- TYPE: vertex_feature
39
- NUM_VERTICES: 5004
40
- FEATURE_DIM: 256
41
- FEATURES_TRAINABLE: False
42
- IS_TRAINABLE: True
43
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
- "zebra_5002":
45
- TYPE: vertex_feature
46
- NUM_VERTICES: 5002
47
- FEATURE_DIM: 256
48
- FEATURES_TRAINABLE: False
49
- IS_TRAINABLE: True
50
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
- "giraffe_5002":
52
- TYPE: vertex_feature
53
- NUM_VERTICES: 5002
54
- FEATURE_DIM: 256
55
- FEATURES_TRAINABLE: False
56
- IS_TRAINABLE: True
57
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
- "elephant_5002":
59
- TYPE: vertex_feature
60
- NUM_VERTICES: 5002
61
- FEATURE_DIM: 256
62
- FEATURES_TRAINABLE: False
63
- IS_TRAINABLE: True
64
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
- "cow_5002":
66
- TYPE: vertex_feature
67
- NUM_VERTICES: 5002
68
- FEATURE_DIM: 256
69
- FEATURES_TRAINABLE: False
70
- IS_TRAINABLE: True
71
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
- "bear_4936":
73
- TYPE: vertex_feature
74
- NUM_VERTICES: 4936
75
- FEATURE_DIM: 256
76
- FEATURES_TRAINABLE: False
77
- IS_TRAINABLE: True
78
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
- DATASETS:
80
- TRAIN:
81
- - "densepose_lvis_v1_ds1_train_v1"
82
- TEST:
83
- - "densepose_lvis_v1_ds1_val_v1"
84
- WHITELISTED_CATEGORIES:
85
- "densepose_lvis_v1_ds1_train_v1":
86
- - 943 # sheep
87
- - 1202 # zebra
88
- - 569 # horse
89
- - 496 # giraffe
90
- - 422 # elephant
91
- - 80 # cow
92
- - 76 # bear
93
- - 225 # cat
94
- - 378 # dog
95
- "densepose_lvis_v1_ds1_val_v1":
96
- - 943 # sheep
97
- - 1202 # zebra
98
- - 569 # horse
99
- - 496 # giraffe
100
- - 422 # elephant
101
- - 80 # cow
102
- - 76 # bear
103
- - 225 # cat
104
- - 378 # dog
105
- CLASS_TO_MESH_NAME_MAPPING:
106
- "0": "bear_4936"
107
- "1": "cow_5002"
108
- "2": "cat_5001"
109
- "3": "dog_5002"
110
- "4": "elephant_5002"
111
- "5": "giraffe_5002"
112
- "6": "horse_5004"
113
- "7": "sheep_5004"
114
- "8": "zebra_5002"
115
- SOLVER:
116
- MAX_ITER: 4000
117
- STEPS: (3000, 3500)
118
- DENSEPOSE_EVALUATION:
119
- EVALUATE_MESH_ALIGNMENT: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml DELETED
@@ -1,118 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_HEADS:
7
- NUM_CLASSES: 9
8
- ROI_DENSEPOSE_HEAD:
9
- NAME: "DensePoseV1ConvXHead"
10
- COARSE_SEGM_TRAINED_BY_MASKS: True
11
- CSE:
12
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
- EMBED_LOSS_WEIGHT: 0.0
14
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
15
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
16
- EMBEDDERS:
17
- "cat_7466":
18
- TYPE: vertex_feature
19
- NUM_VERTICES: 7466
20
- FEATURE_DIM: 256
21
- FEATURES_TRAINABLE: False
22
- IS_TRAINABLE: True
23
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
24
- "dog_7466":
25
- TYPE: vertex_feature
26
- NUM_VERTICES: 7466
27
- FEATURE_DIM: 256
28
- FEATURES_TRAINABLE: False
29
- IS_TRAINABLE: True
30
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
31
- "sheep_5004":
32
- TYPE: vertex_feature
33
- NUM_VERTICES: 5004
34
- FEATURE_DIM: 256
35
- FEATURES_TRAINABLE: False
36
- IS_TRAINABLE: True
37
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
38
- "horse_5004":
39
- TYPE: vertex_feature
40
- NUM_VERTICES: 5004
41
- FEATURE_DIM: 256
42
- FEATURES_TRAINABLE: False
43
- IS_TRAINABLE: True
44
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
45
- "zebra_5002":
46
- TYPE: vertex_feature
47
- NUM_VERTICES: 5002
48
- FEATURE_DIM: 256
49
- FEATURES_TRAINABLE: False
50
- IS_TRAINABLE: True
51
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
52
- "giraffe_5002":
53
- TYPE: vertex_feature
54
- NUM_VERTICES: 5002
55
- FEATURE_DIM: 256
56
- FEATURES_TRAINABLE: False
57
- IS_TRAINABLE: True
58
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
59
- "elephant_5002":
60
- TYPE: vertex_feature
61
- NUM_VERTICES: 5002
62
- FEATURE_DIM: 256
63
- FEATURES_TRAINABLE: False
64
- IS_TRAINABLE: True
65
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
66
- "cow_5002":
67
- TYPE: vertex_feature
68
- NUM_VERTICES: 5002
69
- FEATURE_DIM: 256
70
- FEATURES_TRAINABLE: False
71
- IS_TRAINABLE: True
72
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
73
- "bear_4936":
74
- TYPE: vertex_feature
75
- NUM_VERTICES: 4936
76
- FEATURE_DIM: 256
77
- FEATURES_TRAINABLE: False
78
- IS_TRAINABLE: True
79
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
80
- DATASETS:
81
- TRAIN:
82
- - "densepose_lvis_v1_ds2_train_v1"
83
- TEST:
84
- - "densepose_lvis_v1_ds2_val_v1"
85
- WHITELISTED_CATEGORIES:
86
- "densepose_lvis_v1_ds2_train_v1":
87
- - 943 # sheep
88
- - 1202 # zebra
89
- - 569 # horse
90
- - 496 # giraffe
91
- - 422 # elephant
92
- - 80 # cow
93
- - 76 # bear
94
- - 225 # cat
95
- - 378 # dog
96
- "densepose_lvis_v1_ds2_val_v1":
97
- - 943 # sheep
98
- - 1202 # zebra
99
- - 569 # horse
100
- - 496 # giraffe
101
- - 422 # elephant
102
- - 80 # cow
103
- - 76 # bear
104
- - 225 # cat
105
- - 378 # dog
106
- CLASS_TO_MESH_NAME_MAPPING:
107
- "0": "bear_4936"
108
- "1": "cow_5002"
109
- "2": "cat_7466"
110
- "3": "dog_7466"
111
- "4": "elephant_5002"
112
- "5": "giraffe_5002"
113
- "6": "horse_5004"
114
- "7": "sheep_5004"
115
- "8": "zebra_5002"
116
- SOLVER:
117
- MAX_ITER: 24000
118
- STEPS: (20000, 22000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml DELETED
@@ -1,29 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseV1ConvXHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
- EMBEDDING_DIST_GAUSS_SIGMA: 0.1
11
- GEODESIC_DIST_GAUSS_SIGMA: 0.1
12
- EMBEDDERS:
13
- "chimp_5029":
14
- TYPE: vertex_feature
15
- NUM_VERTICES: 5029
16
- FEATURE_DIM: 256
17
- FEATURES_TRAINABLE: False
18
- IS_TRAINABLE: True
19
- INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_chimp_5029_256.pkl"
20
- DATASETS:
21
- TRAIN:
22
- - "densepose_chimps_cse_train"
23
- TEST:
24
- - "densepose_chimps_cse_val"
25
- CLASS_TO_MESH_NAME_MAPPING:
26
- "0": "chimp_5029"
27
- SOLVER:
28
- MAX_ITER: 4000
29
- STEPS: (3000, 3500)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml DELETED
@@ -1,12 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseV1ConvXHead"
8
- CSE:
9
- EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
- SOLVER:
11
- MAX_ITER: 130000
12
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "iid_iso"
11
- SEGM_CONFIDENCE:
12
- ENABLED: True
13
- POINT_REGRESSION_WEIGHTS: 0.0005
14
- SOLVER:
15
- CLIP_GRADIENTS:
16
- ENABLED: True
17
- MAX_ITER: 130000
18
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "iid_iso"
11
- POINT_REGRESSION_WEIGHTS: 0.0005
12
- SOLVER:
13
- CLIP_GRADIENTS:
14
- ENABLED: True
15
- MAX_ITER: 130000
16
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "indep_aniso"
11
- SEGM_CONFIDENCE:
12
- ENABLED: True
13
- POINT_REGRESSION_WEIGHTS: 0.0005
14
- SOLVER:
15
- CLIP_GRADIENTS:
16
- ENABLED: True
17
- MAX_ITER: 130000
18
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "indep_aniso"
11
- POINT_REGRESSION_WEIGHTS: 0.0005
12
- SOLVER:
13
- CLIP_GRADIENTS:
14
- ENABLED: True
15
- MAX_ITER: 130000
16
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml DELETED
@@ -1,10 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- SOLVER:
9
- MAX_ITER: 130000
10
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- UV_CONFIDENCE:
8
- ENABLED: True
9
- TYPE: "iid_iso"
10
- SEGM_CONFIDENCE:
11
- ENABLED: True
12
- POINT_REGRESSION_WEIGHTS: 0.0005
13
- SOLVER:
14
- CLIP_GRADIENTS:
15
- ENABLED: True
16
- MAX_ITER: 130000
17
- STEPS: (100000, 120000)
18
- WARMUP_FACTOR: 0.025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- UV_CONFIDENCE:
8
- ENABLED: True
9
- TYPE: "iid_iso"
10
- POINT_REGRESSION_WEIGHTS: 0.0005
11
- SOLVER:
12
- CLIP_GRADIENTS:
13
- ENABLED: True
14
- MAX_ITER: 130000
15
- STEPS: (100000, 120000)
16
- WARMUP_FACTOR: 0.025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- UV_CONFIDENCE:
8
- ENABLED: True
9
- TYPE: "indep_aniso"
10
- SEGM_CONFIDENCE:
11
- ENABLED: True
12
- POINT_REGRESSION_WEIGHTS: 0.0005
13
- SOLVER:
14
- CLIP_GRADIENTS:
15
- ENABLED: True
16
- MAX_ITER: 130000
17
- STEPS: (100000, 120000)
18
- WARMUP_FACTOR: 0.025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- UV_CONFIDENCE:
8
- ENABLED: True
9
- TYPE: "indep_aniso"
10
- POINT_REGRESSION_WEIGHTS: 0.0005
11
- SOLVER:
12
- CLIP_GRADIENTS:
13
- ENABLED: True
14
- MAX_ITER: 130000
15
- STEPS: (100000, 120000)
16
- WARMUP_FACTOR: 0.025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_s1x.yaml DELETED
@@ -1,8 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- SOLVER:
7
- MAX_ITER: 130000
8
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml DELETED
@@ -1,17 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
- RESNETS:
5
- DEPTH: 101
6
- ROI_DENSEPOSE_HEAD:
7
- NUM_COARSE_SEGM_CHANNELS: 15
8
- POOLER_RESOLUTION: 14
9
- HEATMAP_SIZE: 56
10
- INDEX_WEIGHTS: 2.0
11
- PART_WEIGHTS: 0.3
12
- POINT_REGRESSION_WEIGHTS: 0.1
13
- DECODER_ON: False
14
- SOLVER:
15
- BASE_LR: 0.002
16
- MAX_ITER: 130000
17
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "iid_iso"
11
- SEGM_CONFIDENCE:
12
- ENABLED: True
13
- POINT_REGRESSION_WEIGHTS: 0.0005
14
- SOLVER:
15
- CLIP_GRADIENTS:
16
- ENABLED: True
17
- MAX_ITER: 130000
18
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "iid_iso"
11
- POINT_REGRESSION_WEIGHTS: 0.0005
12
- SOLVER:
13
- CLIP_GRADIENTS:
14
- ENABLED: True
15
- MAX_ITER: 130000
16
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml DELETED
@@ -1,18 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "indep_aniso"
11
- SEGM_CONFIDENCE:
12
- ENABLED: True
13
- POINT_REGRESSION_WEIGHTS: 0.0005
14
- SOLVER:
15
- CLIP_GRADIENTS:
16
- ENABLED: True
17
- MAX_ITER: 130000
18
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml DELETED
@@ -1,16 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- UV_CONFIDENCE:
9
- ENABLED: True
10
- TYPE: "indep_aniso"
11
- POINT_REGRESSION_WEIGHTS: 0.0005
12
- SOLVER:
13
- CLIP_GRADIENTS:
14
- ENABLED: True
15
- MAX_ITER: 130000
16
- STEPS: (100000, 120000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml DELETED
@@ -1,10 +0,0 @@
1
- _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
- MODEL:
3
- WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
- RESNETS:
5
- DEPTH: 50
6
- ROI_DENSEPOSE_HEAD:
7
- NAME: "DensePoseDeepLabHead"
8
- SOLVER:
9
- MAX_ITER: 130000
10
- STEPS: (100000, 120000)