Latest Update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -2
- README-2.md +0 -162
- README.md +46 -1
- app.py +0 -313
- app_VTON.py +0 -328
- apply_net.py +0 -359
- ckpt/densepose/model_final_162be9.pkl +0 -3
- ckpt/humanparsing/parsing_atr.onnx +0 -3
- ckpt/humanparsing/parsing_lip.onnx +0 -3
- ckpt/openpose/.DS_Store +0 -3
- ckpt/openpose/ckpts/body_pose_model.pth +0 -3
- configs/Base-DensePose-RCNN-FPN.yaml +0 -48
- configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml +0 -16
- configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml +0 -23
- configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml +0 -23
- configs/cse/Base-DensePose-RCNN-FPN-Human.yaml +0 -20
- configs/cse/Base-DensePose-RCNN-FPN.yaml +0 -60
- configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml +0 -12
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml +0 -133
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml +0 -133
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml +0 -119
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml +0 -121
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml +0 -138
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml +0 -119
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml +0 -119
- configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml +0 -118
- configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml +0 -29
- configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml +0 -12
- configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml +0 -16
- configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml +0 -16
- configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml +0 -10
- configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml +0 -16
- configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml +0 -16
- configs/densepose_rcnn_R_101_FPN_s1x.yaml +0 -8
- configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml +0 -17
- configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml +0 -16
- configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml +0 -18
- configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml +0 -16
- configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml +0 -10
.gitattributes
CHANGED
@@ -33,6 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
ckpt/** filter=lfs diff=lfs merge=lfs -text
|
37 |
assets/teaser.png filter=lfs diff=lfs merge=lfs -text
|
38 |
-
assets/teaser2.png filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
36 |
assets/teaser.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/teaser2.png filter=lfs diff=lfs merge=lfs -text
|
README-2.md
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
|
2 |
-
<div align="center">
|
3 |
-
<h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>
|
4 |
-
|
5 |
-
<a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
|
6 |
-
<a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
|
7 |
-
<a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
|
8 |
-
<a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
|
9 |
-
|
10 |
-
|
11 |
-
</div>
|
12 |
-
|
13 |
-
This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).
|
14 |
-
|
15 |
-
Star ⭐ us if you like it!
|
16 |
-
|
17 |
-
---
|
18 |
-
|
19 |
-
|
20 |
-
<!-- ![teaser2](assets/teaser2.png)
|
21 |
-
![teaser](assets/teaser.png) -->
|
22 |
-
|
23 |
-
|
24 |
-
## TODO LIST
|
25 |
-
|
26 |
-
|
27 |
-
- [x] demo model
|
28 |
-
- [x] inference code
|
29 |
-
- [ ] training code
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
## Requirements
|
34 |
-
|
35 |
-
```
|
36 |
-
git clone https://github.com/yisol/IDM-VTON.git
|
37 |
-
cd IDM-VTON
|
38 |
-
|
39 |
-
conda env create -f environment.yaml
|
40 |
-
conda activate idm
|
41 |
-
```
|
42 |
-
|
43 |
-
## Data preparation
|
44 |
-
|
45 |
-
### VITON-HD
|
46 |
-
You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).
|
47 |
-
|
48 |
-
After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.
|
49 |
-
|
50 |
-
Structure of the Dataset directory should be as follows.
|
51 |
-
|
52 |
-
```
|
53 |
-
|
54 |
-
train
|
55 |
-
|-- ...
|
56 |
-
|
57 |
-
test
|
58 |
-
|-- image
|
59 |
-
|-- image-densepose
|
60 |
-
|-- agnostic-mask
|
61 |
-
|-- cloth
|
62 |
-
|-- vitonhd_test_tagged.json
|
63 |
-
|
64 |
-
```
|
65 |
-
|
66 |
-
### DressCode
|
67 |
-
You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).
|
68 |
-
|
69 |
-
We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).
|
70 |
-
|
71 |
-
We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.
|
72 |
-
|
73 |
-
After download the DressCode dataset, place image-densepose directories and caption text files as follows.
|
74 |
-
|
75 |
-
```
|
76 |
-
DressCode
|
77 |
-
|-- dresses
|
78 |
-
|-- images
|
79 |
-
|-- image-densepose
|
80 |
-
|-- dc_caption.txt
|
81 |
-
|-- ...
|
82 |
-
|-- lower_body
|
83 |
-
|-- images
|
84 |
-
|-- image-densepose
|
85 |
-
|-- dc_caption.txt
|
86 |
-
|-- ...
|
87 |
-
|-- upper_body
|
88 |
-
|-- images
|
89 |
-
|-- image-densepose
|
90 |
-
|-- dc_caption.txt
|
91 |
-
|-- ...
|
92 |
-
```
|
93 |
-
|
94 |
-
|
95 |
-
## Inference
|
96 |
-
|
97 |
-
|
98 |
-
### VITON-HD
|
99 |
-
|
100 |
-
Inference using python file with arguments,
|
101 |
-
|
102 |
-
```
|
103 |
-
accelerate launch inference.py \
|
104 |
-
--width 768 --height 1024 --num_inference_steps 30 \
|
105 |
-
--output_dir "result" \
|
106 |
-
--unpaired \
|
107 |
-
--data_dir "DATA_DIR" \
|
108 |
-
--seed 42 \
|
109 |
-
--test_batch_size 2 \
|
110 |
-
--guidance_scale 2.0
|
111 |
-
```
|
112 |
-
|
113 |
-
or, you can simply run with the script file.
|
114 |
-
|
115 |
-
```
|
116 |
-
sh inference.sh
|
117 |
-
```
|
118 |
-
|
119 |
-
### DressCode
|
120 |
-
|
121 |
-
For DressCode dataset, put the category you want to generate images via category argument,
|
122 |
-
```
|
123 |
-
accelerate launch inference_dc.py \
|
124 |
-
--width 768 --height 1024 --num_inference_steps 30 \
|
125 |
-
--output_dir "result" \
|
126 |
-
--unpaired \
|
127 |
-
--data_dir "DATA_DIR" \
|
128 |
-
--seed 42
|
129 |
-
--test_batch_size 2
|
130 |
-
--guidance_scale 2.0
|
131 |
-
--category "upper_body"
|
132 |
-
```
|
133 |
-
|
134 |
-
or, you can simply run with the script file.
|
135 |
-
```
|
136 |
-
sh inference.sh
|
137 |
-
```
|
138 |
-
|
139 |
-
|
140 |
-
## Acknowledgements
|
141 |
-
|
142 |
-
For the [demo](https://huggingface.co/spaces/yisol/IDM-VTON), GPUs are supported from [ZeroGPU](https://huggingface.co/zero-gpu-explorers), and masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).
|
143 |
-
|
144 |
-
Parts of our code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
## Citation
|
149 |
-
```
|
150 |
-
@article{choi2024improving,
|
151 |
-
title={Improving Diffusion Models for Virtual Try-on},
|
152 |
-
author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
|
153 |
-
journal={arXiv preprint arXiv:2403.05139},
|
154 |
-
year={2024}
|
155 |
-
}
|
156 |
-
```
|
157 |
-
|
158 |
-
## License
|
159 |
-
The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,8 +1,53 @@
|
|
|
|
1 |
base_model: stable-diffusion-xl-1.0-inpainting-0.1
|
2 |
tags:
|
3 |
- stable-diffusion-xl
|
4 |
- inpainting
|
5 |
- virtual try-on
|
6 |
license: cc-by-nc-sa-4.0
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
base_model: stable-diffusion-xl-1.0-inpainting-0.1
|
3 |
tags:
|
4 |
- stable-diffusion-xl
|
5 |
- inpainting
|
6 |
- virtual try-on
|
7 |
license: cc-by-nc-sa-4.0
|
8 |
+
---
|
9 |
|
10 |
+
|
11 |
+
|
12 |
+
# Check out more codes on our [github repository](https://github.com/yisol/IDM-VTON)!
|
13 |
+
|
14 |
+
# IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild
|
15 |
+
This is an official implementation of paper 'Improving Diffusion Models for Authentic Virtual Try-on in the Wild'
|
16 |
+
- [paper](https://arxiv.org/abs/2403.05139)
|
17 |
+
- [project page](https://idm-vton.github.io/)
|
18 |
+
|
19 |
+
🤗 Try our huggingface [Demo](https://huggingface.co/spaces/yisol/IDM-VTON)
|
20 |
+
|
21 |
+
![teaser](assets/teaser.png)
|
22 |
+
![teaser2](assets/teaser2.png)
|
23 |
+
|
24 |
+
|
25 |
+
## TODO LIST
|
26 |
+
|
27 |
+
|
28 |
+
- [x] demo model
|
29 |
+
- [x] inference code
|
30 |
+
- [ ] training code
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
## Acknowledgements
|
36 |
+
|
37 |
+
For the demo, GPUs are supported from [zerogpu](https://huggingface.co/zero-gpu-explorers), and auto masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).
|
38 |
+
Parts of the code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
## Citation
|
43 |
+
```
|
44 |
+
@article{choi2024improving,
|
45 |
+
title={Improving Diffusion Models for Virtual Try-on},
|
46 |
+
author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
|
47 |
+
journal={arXiv preprint arXiv:2403.05139},
|
48 |
+
year={2024}
|
49 |
+
}
|
50 |
+
```
|
51 |
+
|
52 |
+
## License
|
53 |
+
The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
|
app.py
DELETED
@@ -1,313 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
4 |
-
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
5 |
-
from src.unet_hacked_tryon import UNet2DConditionModel
|
6 |
-
from transformers import (
|
7 |
-
CLIPImageProcessor,
|
8 |
-
CLIPVisionModelWithProjection,
|
9 |
-
CLIPTextModel,
|
10 |
-
CLIPTextModelWithProjection,
|
11 |
-
)
|
12 |
-
from diffusers import DDPMScheduler,AutoencoderKL
|
13 |
-
from typing import List
|
14 |
-
|
15 |
-
import torch
|
16 |
-
import os
|
17 |
-
from transformers import AutoTokenizer
|
18 |
-
import spaces
|
19 |
-
import numpy as np
|
20 |
-
from utils_mask import get_mask_location
|
21 |
-
from torchvision import transforms
|
22 |
-
import apply_net
|
23 |
-
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
-
from preprocess.openpose.run_openpose import OpenPose
|
25 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
-
from torchvision.transforms.functional import to_pil_image
|
27 |
-
|
28 |
-
|
29 |
-
def pil_to_binary_mask(pil_image, threshold=0):
|
30 |
-
np_image = np.array(pil_image)
|
31 |
-
grayscale_image = Image.fromarray(np_image).convert("L")
|
32 |
-
binary_mask = np.array(grayscale_image) > threshold
|
33 |
-
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
34 |
-
for i in range(binary_mask.shape[0]):
|
35 |
-
for j in range(binary_mask.shape[1]):
|
36 |
-
if binary_mask[i,j] == True :
|
37 |
-
mask[i,j] = 1
|
38 |
-
mask = (mask*255).astype(np.uint8)
|
39 |
-
output_mask = Image.fromarray(mask)
|
40 |
-
return output_mask
|
41 |
-
|
42 |
-
|
43 |
-
base_path = 'Roopansh/Ailusion-VTON-DEMO-v1'
|
44 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
45 |
-
|
46 |
-
unet = UNet2DConditionModel.from_pretrained(
|
47 |
-
base_path,
|
48 |
-
subfolder="unet",
|
49 |
-
torch_dtype=torch.float16,
|
50 |
-
)
|
51 |
-
unet.requires_grad_(False)
|
52 |
-
tokenizer_one = AutoTokenizer.from_pretrained(
|
53 |
-
base_path,
|
54 |
-
subfolder="tokenizer",
|
55 |
-
revision=None,
|
56 |
-
use_fast=False,
|
57 |
-
)
|
58 |
-
tokenizer_two = AutoTokenizer.from_pretrained(
|
59 |
-
base_path,
|
60 |
-
subfolder="tokenizer_2",
|
61 |
-
revision=None,
|
62 |
-
use_fast=False,
|
63 |
-
)
|
64 |
-
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
65 |
-
|
66 |
-
text_encoder_one = CLIPTextModel.from_pretrained(
|
67 |
-
base_path,
|
68 |
-
subfolder="text_encoder",
|
69 |
-
torch_dtype=torch.float16,
|
70 |
-
)
|
71 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
72 |
-
base_path,
|
73 |
-
subfolder="text_encoder_2",
|
74 |
-
torch_dtype=torch.float16,
|
75 |
-
)
|
76 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
-
base_path,
|
78 |
-
subfolder="image_encoder",
|
79 |
-
torch_dtype=torch.float16,
|
80 |
-
)
|
81 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
82 |
-
subfolder="vae",
|
83 |
-
torch_dtype=torch.float16,
|
84 |
-
)
|
85 |
-
|
86 |
-
# "stabilityai/stable-diffusion-xl-base-1.0",
|
87 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
88 |
-
base_path,
|
89 |
-
subfolder="unet_encoder",
|
90 |
-
torch_dtype=torch.float16,
|
91 |
-
)
|
92 |
-
|
93 |
-
parsing_model = Parsing(0)
|
94 |
-
openpose_model = OpenPose(0)
|
95 |
-
|
96 |
-
UNet_Encoder.requires_grad_(False)
|
97 |
-
image_encoder.requires_grad_(False)
|
98 |
-
vae.requires_grad_(False)
|
99 |
-
unet.requires_grad_(False)
|
100 |
-
text_encoder_one.requires_grad_(False)
|
101 |
-
text_encoder_two.requires_grad_(False)
|
102 |
-
tensor_transfrom = transforms.Compose(
|
103 |
-
[
|
104 |
-
transforms.ToTensor(),
|
105 |
-
transforms.Normalize([0.5], [0.5]),
|
106 |
-
]
|
107 |
-
)
|
108 |
-
|
109 |
-
pipe = TryonPipeline.from_pretrained(
|
110 |
-
base_path,
|
111 |
-
unet=unet,
|
112 |
-
vae=vae,
|
113 |
-
feature_extractor= CLIPImageProcessor(),
|
114 |
-
text_encoder = text_encoder_one,
|
115 |
-
text_encoder_2 = text_encoder_two,
|
116 |
-
tokenizer = tokenizer_one,
|
117 |
-
tokenizer_2 = tokenizer_two,
|
118 |
-
scheduler = noise_scheduler,
|
119 |
-
image_encoder=image_encoder,
|
120 |
-
torch_dtype=torch.float16,
|
121 |
-
)
|
122 |
-
pipe.unet_encoder = UNet_Encoder
|
123 |
-
|
124 |
-
@spaces.GPU
|
125 |
-
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
126 |
-
device = "cuda"
|
127 |
-
|
128 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
129 |
-
pipe.to(device)
|
130 |
-
pipe.unet_encoder.to(device)
|
131 |
-
|
132 |
-
garm_img= garm_img.convert("RGB").resize((768,1024))
|
133 |
-
human_img_orig = dict["background"].convert("RGB")
|
134 |
-
|
135 |
-
if is_checked_crop:
|
136 |
-
width, height = human_img_orig.size
|
137 |
-
target_width = int(min(width, height * (3 / 4)))
|
138 |
-
target_height = int(min(height, width * (4 / 3)))
|
139 |
-
left = (width - target_width) / 2
|
140 |
-
top = (height - target_height) / 2
|
141 |
-
right = (width + target_width) / 2
|
142 |
-
bottom = (height + target_height) / 2
|
143 |
-
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
144 |
-
crop_size = cropped_img.size
|
145 |
-
human_img = cropped_img.resize((768,1024))
|
146 |
-
else:
|
147 |
-
human_img = human_img_orig.resize((768,1024))
|
148 |
-
|
149 |
-
|
150 |
-
if is_checked:
|
151 |
-
keypoints = openpose_model(human_img.resize((384,512)))
|
152 |
-
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
153 |
-
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
154 |
-
mask = mask.resize((768,1024))
|
155 |
-
else:
|
156 |
-
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
157 |
-
# mask = transforms.ToTensor()(mask)
|
158 |
-
# mask = mask.unsqueeze(0)
|
159 |
-
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
160 |
-
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
161 |
-
|
162 |
-
|
163 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
164 |
-
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
169 |
-
# verbosity = getattr(args, "verbosity", None)
|
170 |
-
pose_img = args.func(args,human_img_arg)
|
171 |
-
pose_img = pose_img[:,:,::-1]
|
172 |
-
pose_img = Image.fromarray(pose_img).resize((768,1024))
|
173 |
-
|
174 |
-
with torch.no_grad():
|
175 |
-
# Extract the images
|
176 |
-
with torch.cuda.amp.autocast():
|
177 |
-
with torch.no_grad():
|
178 |
-
prompt = "model is wearing " + garment_des
|
179 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
180 |
-
with torch.inference_mode():
|
181 |
-
(
|
182 |
-
prompt_embeds,
|
183 |
-
negative_prompt_embeds,
|
184 |
-
pooled_prompt_embeds,
|
185 |
-
negative_pooled_prompt_embeds,
|
186 |
-
) = pipe.encode_prompt(
|
187 |
-
prompt,
|
188 |
-
num_images_per_prompt=1,
|
189 |
-
do_classifier_free_guidance=True,
|
190 |
-
negative_prompt=negative_prompt,
|
191 |
-
)
|
192 |
-
|
193 |
-
prompt = "a photo of " + garment_des
|
194 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
195 |
-
if not isinstance(prompt, List):
|
196 |
-
prompt = [prompt] * 1
|
197 |
-
if not isinstance(negative_prompt, List):
|
198 |
-
negative_prompt = [negative_prompt] * 1
|
199 |
-
with torch.inference_mode():
|
200 |
-
(
|
201 |
-
prompt_embeds_c,
|
202 |
-
_,
|
203 |
-
_,
|
204 |
-
_,
|
205 |
-
) = pipe.encode_prompt(
|
206 |
-
prompt,
|
207 |
-
num_images_per_prompt=1,
|
208 |
-
do_classifier_free_guidance=False,
|
209 |
-
negative_prompt=negative_prompt,
|
210 |
-
)
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
215 |
-
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
216 |
-
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
217 |
-
images = pipe(
|
218 |
-
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
219 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
220 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
221 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
222 |
-
num_inference_steps=denoise_steps,
|
223 |
-
generator=generator,
|
224 |
-
strength = 1.0,
|
225 |
-
pose_img = pose_img.to(device,torch.float16),
|
226 |
-
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
227 |
-
cloth = garm_tensor.to(device,torch.float16),
|
228 |
-
mask_image=mask,
|
229 |
-
image=human_img,
|
230 |
-
height=1024,
|
231 |
-
width=768,
|
232 |
-
ip_adapter_image = garm_img.resize((768,1024)),
|
233 |
-
guidance_scale=2.0,
|
234 |
-
)[0]
|
235 |
-
|
236 |
-
if is_checked_crop:
|
237 |
-
out_img = images[0].resize(crop_size)
|
238 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
239 |
-
return human_img_orig, mask_gray
|
240 |
-
else:
|
241 |
-
return images[0], mask_gray
|
242 |
-
# return images[0], mask_gray
|
243 |
-
|
244 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
245 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
246 |
-
|
247 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
248 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
249 |
-
|
250 |
-
human_ex_list = []
|
251 |
-
for ex_human in human_list_path:
|
252 |
-
ex_dict= {}
|
253 |
-
ex_dict['background'] = ex_human
|
254 |
-
ex_dict['layers'] = None
|
255 |
-
ex_dict['composite'] = None
|
256 |
-
human_ex_list.append(ex_dict)
|
257 |
-
|
258 |
-
##default human
|
259 |
-
|
260 |
-
|
261 |
-
image_blocks = gr.Blocks().queue()
|
262 |
-
with image_blocks as demo:
|
263 |
-
gr.Markdown("## AILUSION VTON 👕👔👚")
|
264 |
-
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
|
265 |
-
with gr.Row():
|
266 |
-
with gr.Column():
|
267 |
-
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
268 |
-
with gr.Row():
|
269 |
-
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
270 |
-
with gr.Row():
|
271 |
-
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
272 |
-
|
273 |
-
example = gr.Examples(
|
274 |
-
inputs=imgs,
|
275 |
-
examples_per_page=10,
|
276 |
-
examples=human_ex_list
|
277 |
-
)
|
278 |
-
|
279 |
-
with gr.Column():
|
280 |
-
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
281 |
-
with gr.Row(elem_id="prompt-container"):
|
282 |
-
with gr.Row():
|
283 |
-
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
284 |
-
example = gr.Examples(
|
285 |
-
inputs=garm_img,
|
286 |
-
examples_per_page=8,
|
287 |
-
examples=garm_list_path)
|
288 |
-
with gr.Column():
|
289 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
290 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
291 |
-
with gr.Column():
|
292 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
293 |
-
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
with gr.Column():
|
299 |
-
try_button = gr.Button(value="Try-on")
|
300 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
301 |
-
with gr.Row():
|
302 |
-
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
303 |
-
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
image_blocks.launch()
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_VTON.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import argparse, torch, os
|
3 |
-
from PIL import Image
|
4 |
-
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
5 |
-
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
6 |
-
from src.unet_hacked_tryon import UNet2DConditionModel
|
7 |
-
from transformers import (
|
8 |
-
CLIPImageProcessor,
|
9 |
-
CLIPVisionModelWithProjection,
|
10 |
-
)
|
11 |
-
from diffusers import AutoencoderKL
|
12 |
-
from typing import List
|
13 |
-
from util.common import open_folder
|
14 |
-
from util.image import pil_to_binary_mask, save_output_image
|
15 |
-
from utils_mask import get_mask_location
|
16 |
-
from torchvision import transforms
|
17 |
-
import apply_net
|
18 |
-
from preprocess.humanparsing.run_parsing import Parsing
|
19 |
-
from preprocess.openpose.run_openpose import OpenPose
|
20 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
21 |
-
from torchvision.transforms.functional import to_pil_image
|
22 |
-
from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc
|
23 |
-
|
24 |
-
parser = argparse.ArgumentParser()
|
25 |
-
parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.")
|
26 |
-
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
|
27 |
-
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
|
28 |
-
parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.")
|
29 |
-
args = parser.parse_args()
|
30 |
-
|
31 |
-
load_mode = args.load_mode
|
32 |
-
fixed_vae = args.fixed_vae
|
33 |
-
|
34 |
-
dtype = torch.float16
|
35 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
-
model_id = 'yisol/IDM-VTON'
|
37 |
-
vae_model_id = 'madebyollin/sdxl-vae-fp16-fix'
|
38 |
-
|
39 |
-
dtypeQuantize = dtype
|
40 |
-
|
41 |
-
if(load_mode in ('4bit','8bit')):
|
42 |
-
dtypeQuantize = torch.float8_e4m3fn
|
43 |
-
|
44 |
-
ENABLE_CPU_OFFLOAD = args.lowvram
|
45 |
-
torch.backends.cudnn.allow_tf32 = False
|
46 |
-
torch.backends.cuda.allow_tf32 = False
|
47 |
-
need_restart_cpu_offloading = False
|
48 |
-
|
49 |
-
unet = None
|
50 |
-
pipe = None
|
51 |
-
UNet_Encoder = None
|
52 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
53 |
-
|
54 |
-
def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images):
|
55 |
-
global pipe, unet, UNet_Encoder, need_restart_cpu_offloading
|
56 |
-
|
57 |
-
if pipe == None:
|
58 |
-
unet = UNet2DConditionModel.from_pretrained(
|
59 |
-
model_id,
|
60 |
-
subfolder="unet",
|
61 |
-
torch_dtype=dtypeQuantize,
|
62 |
-
)
|
63 |
-
if load_mode == '4bit':
|
64 |
-
quantize_4bit(unet)
|
65 |
-
|
66 |
-
unet.requires_grad_(False)
|
67 |
-
|
68 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
69 |
-
model_id,
|
70 |
-
subfolder="image_encoder",
|
71 |
-
torch_dtype=torch.float16,
|
72 |
-
)
|
73 |
-
if load_mode == '4bit':
|
74 |
-
quantize_4bit(image_encoder)
|
75 |
-
|
76 |
-
if fixed_vae:
|
77 |
-
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype)
|
78 |
-
else:
|
79 |
-
vae = AutoencoderKL.from_pretrained(model_id,
|
80 |
-
subfolder="vae",
|
81 |
-
torch_dtype=dtype,
|
82 |
-
)
|
83 |
-
|
84 |
-
# "stabilityai/stable-diffusion-xl-base-1.0",
|
85 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
86 |
-
model_id,
|
87 |
-
subfolder="unet_encoder",
|
88 |
-
torch_dtype=dtypeQuantize,
|
89 |
-
)
|
90 |
-
|
91 |
-
if load_mode == '4bit':
|
92 |
-
quantize_4bit(UNet_Encoder)
|
93 |
-
|
94 |
-
UNet_Encoder.requires_grad_(False)
|
95 |
-
image_encoder.requires_grad_(False)
|
96 |
-
vae.requires_grad_(False)
|
97 |
-
unet.requires_grad_(False)
|
98 |
-
|
99 |
-
pipe_param = {
|
100 |
-
'pretrained_model_name_or_path': model_id,
|
101 |
-
'unet': unet,
|
102 |
-
'torch_dtype': dtype,
|
103 |
-
'vae': vae,
|
104 |
-
'image_encoder': image_encoder,
|
105 |
-
'feature_extractor': CLIPImageProcessor(),
|
106 |
-
}
|
107 |
-
|
108 |
-
pipe = TryonPipeline.from_pretrained(**pipe_param).to(device)
|
109 |
-
pipe.unet_encoder = UNet_Encoder
|
110 |
-
pipe.unet_encoder.to(pipe.unet.device)
|
111 |
-
|
112 |
-
if load_mode == '4bit':
|
113 |
-
if pipe.text_encoder is not None:
|
114 |
-
quantize_4bit(pipe.text_encoder)
|
115 |
-
if pipe.text_encoder_2 is not None:
|
116 |
-
quantize_4bit(pipe.text_encoder_2)
|
117 |
-
|
118 |
-
else:
|
119 |
-
if ENABLE_CPU_OFFLOAD:
|
120 |
-
need_restart_cpu_offloading =True
|
121 |
-
|
122 |
-
torch_gc()
|
123 |
-
parsing_model = Parsing(0)
|
124 |
-
openpose_model = OpenPose(0)
|
125 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
126 |
-
tensor_transfrom = transforms.Compose(
|
127 |
-
[
|
128 |
-
transforms.ToTensor(),
|
129 |
-
transforms.Normalize([0.5], [0.5]),
|
130 |
-
]
|
131 |
-
)
|
132 |
-
|
133 |
-
if need_restart_cpu_offloading:
|
134 |
-
restart_cpu_offload(pipe, load_mode)
|
135 |
-
elif ENABLE_CPU_OFFLOAD:
|
136 |
-
pipe.enable_model_cpu_offload()
|
137 |
-
|
138 |
-
#if load_mode != '4bit' :
|
139 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
140 |
-
|
141 |
-
garm_img= garm_img.convert("RGB").resize((768,1024))
|
142 |
-
human_img_orig = dict["background"].convert("RGB")
|
143 |
-
|
144 |
-
if is_checked_crop:
|
145 |
-
width, height = human_img_orig.size
|
146 |
-
target_width = int(min(width, height * (3 / 4)))
|
147 |
-
target_height = int(min(height, width * (4 / 3)))
|
148 |
-
left = (width - target_width) / 2
|
149 |
-
top = (height - target_height) / 2
|
150 |
-
right = (width + target_width) / 2
|
151 |
-
bottom = (height + target_height) / 2
|
152 |
-
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
153 |
-
crop_size = cropped_img.size
|
154 |
-
human_img = cropped_img.resize((768,1024))
|
155 |
-
else:
|
156 |
-
human_img = human_img_orig.resize((768,1024))
|
157 |
-
|
158 |
-
if is_checked:
|
159 |
-
keypoints = openpose_model(human_img.resize((384,512)))
|
160 |
-
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
161 |
-
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
|
162 |
-
mask = mask.resize((768,1024))
|
163 |
-
else:
|
164 |
-
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
165 |
-
# mask = transforms.ToTensor()(mask)
|
166 |
-
# mask = mask.unsqueeze(0)
|
167 |
-
|
168 |
-
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
169 |
-
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
170 |
-
|
171 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
172 |
-
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
173 |
-
|
174 |
-
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
175 |
-
# verbosity = getattr(args, "verbosity", None)
|
176 |
-
pose_img = args.func(args,human_img_arg)
|
177 |
-
pose_img = pose_img[:,:,::-1]
|
178 |
-
pose_img = Image.fromarray(pose_img).resize((768,1024))
|
179 |
-
|
180 |
-
if pipe.text_encoder is not None:
|
181 |
-
pipe.text_encoder.to(device)
|
182 |
-
|
183 |
-
if pipe.text_encoder_2 is not None:
|
184 |
-
pipe.text_encoder_2.to(device)
|
185 |
-
|
186 |
-
with torch.no_grad():
|
187 |
-
# Extract the images
|
188 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
189 |
-
with torch.no_grad():
|
190 |
-
prompt = "model is wearing " + garment_des
|
191 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
192 |
-
with torch.inference_mode():
|
193 |
-
(
|
194 |
-
prompt_embeds,
|
195 |
-
negative_prompt_embeds,
|
196 |
-
pooled_prompt_embeds,
|
197 |
-
negative_pooled_prompt_embeds,
|
198 |
-
) = pipe.encode_prompt(
|
199 |
-
prompt,
|
200 |
-
num_images_per_prompt=1,
|
201 |
-
do_classifier_free_guidance=True,
|
202 |
-
negative_prompt=negative_prompt,
|
203 |
-
)
|
204 |
-
|
205 |
-
prompt = "a photo of " + garment_des
|
206 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
207 |
-
if not isinstance(prompt, List):
|
208 |
-
prompt = [prompt] * 1
|
209 |
-
if not isinstance(negative_prompt, List):
|
210 |
-
negative_prompt = [negative_prompt] * 1
|
211 |
-
with torch.inference_mode():
|
212 |
-
(
|
213 |
-
prompt_embeds_c,
|
214 |
-
_,
|
215 |
-
_,
|
216 |
-
_,
|
217 |
-
) = pipe.encode_prompt(
|
218 |
-
prompt,
|
219 |
-
num_images_per_prompt=1,
|
220 |
-
do_classifier_free_guidance=False,
|
221 |
-
negative_prompt=negative_prompt,
|
222 |
-
)
|
223 |
-
|
224 |
-
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
|
225 |
-
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
|
226 |
-
results = []
|
227 |
-
current_seed = seed
|
228 |
-
for i in range(number_of_images):
|
229 |
-
if is_randomize_seed:
|
230 |
-
current_seed = torch.randint(0, 2**32, size=(1,)).item()
|
231 |
-
generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None
|
232 |
-
current_seed = current_seed + i
|
233 |
-
|
234 |
-
images = pipe(
|
235 |
-
prompt_embeds=prompt_embeds.to(device,dtype),
|
236 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
|
237 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
|
238 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
|
239 |
-
num_inference_steps=denoise_steps,
|
240 |
-
generator=generator,
|
241 |
-
strength = 1.0,
|
242 |
-
pose_img = pose_img.to(device,dtype),
|
243 |
-
text_embeds_cloth=prompt_embeds_c.to(device,dtype),
|
244 |
-
cloth = garm_tensor.to(device,dtype),
|
245 |
-
mask_image=mask,
|
246 |
-
image=human_img,
|
247 |
-
height=1024,
|
248 |
-
width=768,
|
249 |
-
ip_adapter_image = garm_img.resize((768,1024)),
|
250 |
-
guidance_scale=2.0,
|
251 |
-
dtype=dtype,
|
252 |
-
device=device,
|
253 |
-
)[0]
|
254 |
-
if is_checked_crop:
|
255 |
-
out_img = images[0].resize(crop_size)
|
256 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
257 |
-
img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed)
|
258 |
-
results.append(img_path)
|
259 |
-
else:
|
260 |
-
img_path = save_output_image(images[0], base_path="outputs", base_filename='img')
|
261 |
-
results.append(img_path)
|
262 |
-
return results, mask_gray
|
263 |
-
|
264 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
265 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
266 |
-
|
267 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
268 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
269 |
-
|
270 |
-
human_ex_list = []
|
271 |
-
for ex_human in human_list_path:
|
272 |
-
if "Jensen" in ex_human or "sam1 (1)" in ex_human:
|
273 |
-
ex_dict = {}
|
274 |
-
ex_dict['background'] = ex_human
|
275 |
-
ex_dict['layers'] = None
|
276 |
-
ex_dict['composite'] = None
|
277 |
-
human_ex_list.append(ex_dict)
|
278 |
-
|
279 |
-
image_blocks = gr.Blocks().queue()
|
280 |
-
with image_blocks as demo:
|
281 |
-
gr.Markdown("## V7 - IDM-VTON 👕👔👚 improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942")
|
282 |
-
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
|
283 |
-
with gr.Row():
|
284 |
-
with gr.Column():
|
285 |
-
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
286 |
-
with gr.Row():
|
287 |
-
category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body")
|
288 |
-
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
289 |
-
with gr.Row():
|
290 |
-
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True)
|
291 |
-
|
292 |
-
example = gr.Examples(
|
293 |
-
inputs=imgs,
|
294 |
-
examples_per_page=2,
|
295 |
-
examples=human_ex_list
|
296 |
-
)
|
297 |
-
|
298 |
-
with gr.Column():
|
299 |
-
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
300 |
-
with gr.Row(elem_id="prompt-container"):
|
301 |
-
with gr.Row():
|
302 |
-
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
303 |
-
example = gr.Examples(
|
304 |
-
inputs=garm_img,
|
305 |
-
examples_per_page=8,
|
306 |
-
examples=garm_list_path)
|
307 |
-
with gr.Column():
|
308 |
-
with gr.Row():
|
309 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
310 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
311 |
-
with gr.Row():
|
312 |
-
btn_open_outputs = gr.Button("Open Outputs Folder")
|
313 |
-
btn_open_outputs.click(fn=open_folder)
|
314 |
-
with gr.Column():
|
315 |
-
with gr.Row():
|
316 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
317 |
-
image_gallery = gr.Gallery(label="Generated Images", show_label=True)
|
318 |
-
with gr.Row():
|
319 |
-
try_button = gr.Button(value="Try-on")
|
320 |
-
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1)
|
321 |
-
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1)
|
322 |
-
is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True)
|
323 |
-
number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1)
|
324 |
-
|
325 |
-
|
326 |
-
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon')
|
327 |
-
|
328 |
-
image_blocks.launch(inbrowser=True,share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
apply_net.py
DELETED
@@ -1,359 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
-
|
4 |
-
import argparse
|
5 |
-
import glob
|
6 |
-
import logging
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
from typing import Any, ClassVar, Dict, List
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from detectron2.config import CfgNode, get_cfg
|
13 |
-
from detectron2.data.detection_utils import read_image
|
14 |
-
from detectron2.engine.defaults import DefaultPredictor
|
15 |
-
from detectron2.structures.instances import Instances
|
16 |
-
from detectron2.utils.logger import setup_logger
|
17 |
-
|
18 |
-
from densepose import add_densepose_config
|
19 |
-
from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
|
20 |
-
from densepose.utils.logger import verbosity_to_level
|
21 |
-
from densepose.vis.base import CompoundVisualizer
|
22 |
-
from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
|
23 |
-
from densepose.vis.densepose_outputs_vertex import (
|
24 |
-
DensePoseOutputsTextureVisualizer,
|
25 |
-
DensePoseOutputsVertexVisualizer,
|
26 |
-
get_texture_atlases,
|
27 |
-
)
|
28 |
-
from densepose.vis.densepose_results import (
|
29 |
-
DensePoseResultsContourVisualizer,
|
30 |
-
DensePoseResultsFineSegmentationVisualizer,
|
31 |
-
DensePoseResultsUVisualizer,
|
32 |
-
DensePoseResultsVVisualizer,
|
33 |
-
)
|
34 |
-
from densepose.vis.densepose_results_textures import (
|
35 |
-
DensePoseResultsVisualizerWithTexture,
|
36 |
-
get_texture_atlas,
|
37 |
-
)
|
38 |
-
from densepose.vis.extractor import (
|
39 |
-
CompoundExtractor,
|
40 |
-
DensePoseOutputsExtractor,
|
41 |
-
DensePoseResultExtractor,
|
42 |
-
create_extractor,
|
43 |
-
)
|
44 |
-
|
45 |
-
DOC = """Apply Net - a tool to print / visualize DensePose results
|
46 |
-
"""
|
47 |
-
|
48 |
-
LOGGER_NAME = "apply_net"
|
49 |
-
logger = logging.getLogger(LOGGER_NAME)
|
50 |
-
|
51 |
-
_ACTION_REGISTRY: Dict[str, "Action"] = {}
|
52 |
-
|
53 |
-
|
54 |
-
class Action:
|
55 |
-
@classmethod
|
56 |
-
def add_arguments(cls: type, parser: argparse.ArgumentParser):
|
57 |
-
parser.add_argument(
|
58 |
-
"-v",
|
59 |
-
"--verbosity",
|
60 |
-
action="count",
|
61 |
-
help="Verbose mode. Multiple -v options increase the verbosity.",
|
62 |
-
)
|
63 |
-
|
64 |
-
|
65 |
-
def register_action(cls: type):
|
66 |
-
"""
|
67 |
-
Decorator for action classes to automate action registration
|
68 |
-
"""
|
69 |
-
global _ACTION_REGISTRY
|
70 |
-
_ACTION_REGISTRY[cls.COMMAND] = cls
|
71 |
-
return cls
|
72 |
-
|
73 |
-
|
74 |
-
class InferenceAction(Action):
|
75 |
-
@classmethod
|
76 |
-
def add_arguments(cls: type, parser: argparse.ArgumentParser):
|
77 |
-
super(InferenceAction, cls).add_arguments(parser)
|
78 |
-
parser.add_argument("cfg", metavar="<config>", help="Config file")
|
79 |
-
parser.add_argument("model", metavar="<model>", help="Model file")
|
80 |
-
parser.add_argument(
|
81 |
-
"--opts",
|
82 |
-
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
83 |
-
default=[],
|
84 |
-
nargs=argparse.REMAINDER,
|
85 |
-
)
|
86 |
-
|
87 |
-
@classmethod
|
88 |
-
def execute(cls: type, args: argparse.Namespace, human_img):
|
89 |
-
logger.info(f"Loading config from {args.cfg}")
|
90 |
-
opts = []
|
91 |
-
cfg = cls.setup_config(args.cfg, args.model, args, opts)
|
92 |
-
logger.info(f"Loading model from {args.model}")
|
93 |
-
predictor = DefaultPredictor(cfg)
|
94 |
-
# logger.info(f"Loading data from {args.input}")
|
95 |
-
# file_list = cls._get_input_file_list(args.input)
|
96 |
-
# if len(file_list) == 0:
|
97 |
-
# logger.warning(f"No input images for {args.input}")
|
98 |
-
# return
|
99 |
-
context = cls.create_context(args, cfg)
|
100 |
-
# for file_name in file_list:
|
101 |
-
# img = read_image(file_name, format="BGR") # predictor expects BGR image.
|
102 |
-
with torch.no_grad():
|
103 |
-
outputs = predictor(human_img)["instances"]
|
104 |
-
out_pose = cls.execute_on_outputs(context, {"image": human_img}, outputs)
|
105 |
-
cls.postexecute(context)
|
106 |
-
return out_pose
|
107 |
-
|
108 |
-
@classmethod
|
109 |
-
def setup_config(
|
110 |
-
cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
|
111 |
-
):
|
112 |
-
cfg = get_cfg()
|
113 |
-
add_densepose_config(cfg)
|
114 |
-
cfg.merge_from_file(config_fpath)
|
115 |
-
cfg.merge_from_list(args.opts)
|
116 |
-
if opts:
|
117 |
-
cfg.merge_from_list(opts)
|
118 |
-
cfg.MODEL.WEIGHTS = model_fpath
|
119 |
-
cfg.freeze()
|
120 |
-
return cfg
|
121 |
-
|
122 |
-
@classmethod
|
123 |
-
def _get_input_file_list(cls: type, input_spec: str):
|
124 |
-
if os.path.isdir(input_spec):
|
125 |
-
file_list = [
|
126 |
-
os.path.join(input_spec, fname)
|
127 |
-
for fname in os.listdir(input_spec)
|
128 |
-
if os.path.isfile(os.path.join(input_spec, fname))
|
129 |
-
]
|
130 |
-
elif os.path.isfile(input_spec):
|
131 |
-
file_list = [input_spec]
|
132 |
-
else:
|
133 |
-
file_list = glob.glob(input_spec)
|
134 |
-
return file_list
|
135 |
-
|
136 |
-
|
137 |
-
@register_action
|
138 |
-
class DumpAction(InferenceAction):
|
139 |
-
"""
|
140 |
-
Dump action that outputs results to a pickle file
|
141 |
-
"""
|
142 |
-
|
143 |
-
COMMAND: ClassVar[str] = "dump"
|
144 |
-
|
145 |
-
@classmethod
|
146 |
-
def add_parser(cls: type, subparsers: argparse._SubParsersAction):
|
147 |
-
parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.")
|
148 |
-
cls.add_arguments(parser)
|
149 |
-
parser.set_defaults(func=cls.execute)
|
150 |
-
|
151 |
-
@classmethod
|
152 |
-
def add_arguments(cls: type, parser: argparse.ArgumentParser):
|
153 |
-
super(DumpAction, cls).add_arguments(parser)
|
154 |
-
parser.add_argument(
|
155 |
-
"--output",
|
156 |
-
metavar="<dump_file>",
|
157 |
-
default="results.pkl",
|
158 |
-
help="File name to save dump to",
|
159 |
-
)
|
160 |
-
|
161 |
-
@classmethod
|
162 |
-
def execute_on_outputs(
|
163 |
-
cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
|
164 |
-
):
|
165 |
-
image_fpath = entry["file_name"]
|
166 |
-
logger.info(f"Processing {image_fpath}")
|
167 |
-
result = {"file_name": image_fpath}
|
168 |
-
if outputs.has("scores"):
|
169 |
-
result["scores"] = outputs.get("scores").cpu()
|
170 |
-
if outputs.has("pred_boxes"):
|
171 |
-
result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu()
|
172 |
-
if outputs.has("pred_densepose"):
|
173 |
-
if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput):
|
174 |
-
extractor = DensePoseResultExtractor()
|
175 |
-
elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput):
|
176 |
-
extractor = DensePoseOutputsExtractor()
|
177 |
-
result["pred_densepose"] = extractor(outputs)[0]
|
178 |
-
context["results"].append(result)
|
179 |
-
|
180 |
-
@classmethod
|
181 |
-
def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode):
|
182 |
-
context = {"results": [], "out_fname": args.output}
|
183 |
-
return context
|
184 |
-
|
185 |
-
@classmethod
|
186 |
-
def postexecute(cls: type, context: Dict[str, Any]):
|
187 |
-
out_fname = context["out_fname"]
|
188 |
-
out_dir = os.path.dirname(out_fname)
|
189 |
-
if len(out_dir) > 0 and not os.path.exists(out_dir):
|
190 |
-
os.makedirs(out_dir)
|
191 |
-
with open(out_fname, "wb") as hFile:
|
192 |
-
torch.save(context["results"], hFile)
|
193 |
-
logger.info(f"Output saved to {out_fname}")
|
194 |
-
|
195 |
-
|
196 |
-
@register_action
|
197 |
-
class ShowAction(InferenceAction):
|
198 |
-
"""
|
199 |
-
Show action that visualizes selected entries on an image
|
200 |
-
"""
|
201 |
-
|
202 |
-
COMMAND: ClassVar[str] = "show"
|
203 |
-
VISUALIZERS: ClassVar[Dict[str, object]] = {
|
204 |
-
"dp_contour": DensePoseResultsContourVisualizer,
|
205 |
-
"dp_segm": DensePoseResultsFineSegmentationVisualizer,
|
206 |
-
"dp_u": DensePoseResultsUVisualizer,
|
207 |
-
"dp_v": DensePoseResultsVVisualizer,
|
208 |
-
"dp_iuv_texture": DensePoseResultsVisualizerWithTexture,
|
209 |
-
"dp_cse_texture": DensePoseOutputsTextureVisualizer,
|
210 |
-
"dp_vertex": DensePoseOutputsVertexVisualizer,
|
211 |
-
"bbox": ScoredBoundingBoxVisualizer,
|
212 |
-
}
|
213 |
-
|
214 |
-
@classmethod
|
215 |
-
def add_parser(cls: type, subparsers: argparse._SubParsersAction):
|
216 |
-
parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
|
217 |
-
cls.add_arguments(parser)
|
218 |
-
parser.set_defaults(func=cls.execute)
|
219 |
-
|
220 |
-
@classmethod
|
221 |
-
def add_arguments(cls: type, parser: argparse.ArgumentParser):
|
222 |
-
super(ShowAction, cls).add_arguments(parser)
|
223 |
-
parser.add_argument(
|
224 |
-
"visualizations",
|
225 |
-
metavar="<visualizations>",
|
226 |
-
help="Comma separated list of visualizations, possible values: "
|
227 |
-
"[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
|
228 |
-
)
|
229 |
-
parser.add_argument(
|
230 |
-
"--min_score",
|
231 |
-
metavar="<score>",
|
232 |
-
default=0.8,
|
233 |
-
type=float,
|
234 |
-
help="Minimum detection score to visualize",
|
235 |
-
)
|
236 |
-
parser.add_argument(
|
237 |
-
"--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold"
|
238 |
-
)
|
239 |
-
parser.add_argument(
|
240 |
-
"--texture_atlas",
|
241 |
-
metavar="<texture_atlas>",
|
242 |
-
default=None,
|
243 |
-
help="Texture atlas file (for IUV texture transfer)",
|
244 |
-
)
|
245 |
-
parser.add_argument(
|
246 |
-
"--texture_atlases_map",
|
247 |
-
metavar="<texture_atlases_map>",
|
248 |
-
default=None,
|
249 |
-
help="JSON string of a dict containing texture atlas files for each mesh",
|
250 |
-
)
|
251 |
-
parser.add_argument(
|
252 |
-
"--output",
|
253 |
-
metavar="<image_file>",
|
254 |
-
default="outputres.png",
|
255 |
-
help="File name to save output to",
|
256 |
-
)
|
257 |
-
|
258 |
-
@classmethod
|
259 |
-
def setup_config(
|
260 |
-
cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
|
261 |
-
):
|
262 |
-
opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
|
263 |
-
opts.append(str(args.min_score))
|
264 |
-
if args.nms_thresh is not None:
|
265 |
-
opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST")
|
266 |
-
opts.append(str(args.nms_thresh))
|
267 |
-
cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts)
|
268 |
-
return cfg
|
269 |
-
|
270 |
-
@classmethod
|
271 |
-
def execute_on_outputs(
|
272 |
-
cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
|
273 |
-
):
|
274 |
-
import cv2
|
275 |
-
import numpy as np
|
276 |
-
visualizer = context["visualizer"]
|
277 |
-
extractor = context["extractor"]
|
278 |
-
# image_fpath = entry["file_name"]
|
279 |
-
# logger.info(f"Processing {image_fpath}")
|
280 |
-
image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
|
281 |
-
image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
|
282 |
-
data = extractor(outputs)
|
283 |
-
image_vis = visualizer.visualize(image, data)
|
284 |
-
|
285 |
-
return image_vis
|
286 |
-
entry_idx = context["entry_idx"] + 1
|
287 |
-
out_fname = './image-densepose/' + image_fpath.split('/')[-1]
|
288 |
-
out_dir = './image-densepose'
|
289 |
-
out_dir = os.path.dirname(out_fname)
|
290 |
-
if len(out_dir) > 0 and not os.path.exists(out_dir):
|
291 |
-
os.makedirs(out_dir)
|
292 |
-
cv2.imwrite(out_fname, image_vis)
|
293 |
-
logger.info(f"Output saved to {out_fname}")
|
294 |
-
context["entry_idx"] += 1
|
295 |
-
|
296 |
-
@classmethod
|
297 |
-
def postexecute(cls: type, context: Dict[str, Any]):
|
298 |
-
pass
|
299 |
-
# python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/DressCode/upper_body/images dp_segm -v --opts MODEL.DEVICE cpu
|
300 |
-
|
301 |
-
@classmethod
|
302 |
-
def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
|
303 |
-
base, ext = os.path.splitext(fname_base)
|
304 |
-
return base + ".{0:04d}".format(entry_idx) + ext
|
305 |
-
|
306 |
-
@classmethod
|
307 |
-
def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]:
|
308 |
-
vis_specs = args.visualizations.split(",")
|
309 |
-
visualizers = []
|
310 |
-
extractors = []
|
311 |
-
for vis_spec in vis_specs:
|
312 |
-
texture_atlas = get_texture_atlas(args.texture_atlas)
|
313 |
-
texture_atlases_dict = get_texture_atlases(args.texture_atlases_map)
|
314 |
-
vis = cls.VISUALIZERS[vis_spec](
|
315 |
-
cfg=cfg,
|
316 |
-
texture_atlas=texture_atlas,
|
317 |
-
texture_atlases_dict=texture_atlases_dict,
|
318 |
-
)
|
319 |
-
visualizers.append(vis)
|
320 |
-
extractor = create_extractor(vis)
|
321 |
-
extractors.append(extractor)
|
322 |
-
visualizer = CompoundVisualizer(visualizers)
|
323 |
-
extractor = CompoundExtractor(extractors)
|
324 |
-
context = {
|
325 |
-
"extractor": extractor,
|
326 |
-
"visualizer": visualizer,
|
327 |
-
"out_fname": args.output,
|
328 |
-
"entry_idx": 0,
|
329 |
-
}
|
330 |
-
return context
|
331 |
-
|
332 |
-
|
333 |
-
def create_argument_parser() -> argparse.ArgumentParser:
|
334 |
-
parser = argparse.ArgumentParser(
|
335 |
-
description=DOC,
|
336 |
-
formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
|
337 |
-
)
|
338 |
-
parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
|
339 |
-
subparsers = parser.add_subparsers(title="Actions")
|
340 |
-
for _, action in _ACTION_REGISTRY.items():
|
341 |
-
action.add_parser(subparsers)
|
342 |
-
return parser
|
343 |
-
|
344 |
-
|
345 |
-
def main():
|
346 |
-
parser = create_argument_parser()
|
347 |
-
args = parser.parse_args()
|
348 |
-
verbosity = getattr(args, "verbosity", None)
|
349 |
-
global logger
|
350 |
-
logger = setup_logger(name=LOGGER_NAME)
|
351 |
-
logger.setLevel(verbosity_to_level(verbosity))
|
352 |
-
args.func(args)
|
353 |
-
|
354 |
-
|
355 |
-
if __name__ == "__main__":
|
356 |
-
main()
|
357 |
-
|
358 |
-
|
359 |
-
# python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/Dresscode/dresses/humanonly dp_segm -v --opts MODEL.DEVICE cuda
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ckpt/densepose/model_final_162be9.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91
|
3 |
-
size 255757821
|
|
|
|
|
|
|
|
ckpt/humanparsing/parsing_atr.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:04c7d1d070d0e0ae943d86b18cb5aaaea9e278d97462e9cfb270cbbe4cd977f4
|
3 |
-
size 266859305
|
|
|
|
|
|
|
|
ckpt/humanparsing/parsing_lip.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8436e1dae96e2601c373d1ace29c8f0978b16357d9038c17a8ba756cca376dbc
|
3 |
-
size 266863411
|
|
|
|
|
|
|
|
ckpt/openpose/.DS_Store
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e953475b1378e1d0566f8ad8de20077ce8610ae23fb2b5f8bfe57104aca8e911
|
3 |
-
size 6148
|
|
|
|
|
|
|
|
ckpt/openpose/ckpts/body_pose_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:25a948c16078b0f08e236bda51a385d855ef4c153598947c28c0d47ed94bb746
|
3 |
-
size 209267595
|
|
|
|
|
|
|
|
configs/Base-DensePose-RCNN-FPN.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
VERSION: 2
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
4 |
-
BACKBONE:
|
5 |
-
NAME: "build_resnet_fpn_backbone"
|
6 |
-
RESNETS:
|
7 |
-
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
8 |
-
FPN:
|
9 |
-
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
10 |
-
ANCHOR_GENERATOR:
|
11 |
-
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
12 |
-
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
13 |
-
RPN:
|
14 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
15 |
-
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
16 |
-
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
17 |
-
# Detectron1 uses 2000 proposals per-batch,
|
18 |
-
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
19 |
-
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
20 |
-
POST_NMS_TOPK_TRAIN: 1000
|
21 |
-
POST_NMS_TOPK_TEST: 1000
|
22 |
-
|
23 |
-
DENSEPOSE_ON: True
|
24 |
-
ROI_HEADS:
|
25 |
-
NAME: "DensePoseROIHeads"
|
26 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
27 |
-
NUM_CLASSES: 1
|
28 |
-
ROI_BOX_HEAD:
|
29 |
-
NAME: "FastRCNNConvFCHead"
|
30 |
-
NUM_FC: 2
|
31 |
-
POOLER_RESOLUTION: 7
|
32 |
-
POOLER_SAMPLING_RATIO: 2
|
33 |
-
POOLER_TYPE: "ROIAlign"
|
34 |
-
ROI_DENSEPOSE_HEAD:
|
35 |
-
NAME: "DensePoseV1ConvXHead"
|
36 |
-
POOLER_TYPE: "ROIAlign"
|
37 |
-
NUM_COARSE_SEGM_CHANNELS: 2
|
38 |
-
DATASETS:
|
39 |
-
TRAIN: ("densepose_coco_2014_train", "densepose_coco_2014_valminusminival")
|
40 |
-
TEST: ("densepose_coco_2014_minival",)
|
41 |
-
SOLVER:
|
42 |
-
IMS_PER_BATCH: 16
|
43 |
-
BASE_LR: 0.01
|
44 |
-
STEPS: (60000, 80000)
|
45 |
-
MAX_ITER: 90000
|
46 |
-
WARMUP_FACTOR: 0.1
|
47 |
-
INPUT:
|
48 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w"
|
4 |
-
BACKBONE:
|
5 |
-
NAME: "build_hrfpn_backbone"
|
6 |
-
RPN:
|
7 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
8 |
-
ROI_HEADS:
|
9 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
13 |
-
CLIP_GRADIENTS:
|
14 |
-
ENABLED: True
|
15 |
-
CLIP_TYPE: "norm"
|
16 |
-
BASE_LR: 0.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33ck0gvo5jfoWBOPo"
|
4 |
-
BACKBONE:
|
5 |
-
NAME: "build_hrfpn_backbone"
|
6 |
-
RPN:
|
7 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
8 |
-
ROI_HEADS:
|
9 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
10 |
-
HRNET:
|
11 |
-
STAGE2:
|
12 |
-
NUM_CHANNELS: [40, 80]
|
13 |
-
STAGE3:
|
14 |
-
NUM_CHANNELS: [40, 80, 160]
|
15 |
-
STAGE4:
|
16 |
-
NUM_CHANNELS: [40, 80, 160, 320]
|
17 |
-
SOLVER:
|
18 |
-
MAX_ITER: 130000
|
19 |
-
STEPS: (100000, 120000)
|
20 |
-
CLIP_GRADIENTS:
|
21 |
-
ENABLED: True
|
22 |
-
CLIP_TYPE: "norm"
|
23 |
-
BASE_LR: 0.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dKvqI6pBZlifgJk"
|
4 |
-
BACKBONE:
|
5 |
-
NAME: "build_hrfpn_backbone"
|
6 |
-
RPN:
|
7 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
8 |
-
ROI_HEADS:
|
9 |
-
IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
|
10 |
-
HRNET:
|
11 |
-
STAGE2:
|
12 |
-
NUM_CHANNELS: [48, 96]
|
13 |
-
STAGE3:
|
14 |
-
NUM_CHANNELS: [48, 96, 192]
|
15 |
-
STAGE4:
|
16 |
-
NUM_CHANNELS: [48, 96, 192, 384]
|
17 |
-
SOLVER:
|
18 |
-
MAX_ITER: 130000
|
19 |
-
STEPS: (100000, 120000)
|
20 |
-
CLIP_GRADIENTS:
|
21 |
-
ENABLED: True
|
22 |
-
CLIP_TYPE: "norm"
|
23 |
-
BASE_LR: 0.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/Base-DensePose-RCNN-FPN-Human.yaml
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
ROI_DENSEPOSE_HEAD:
|
4 |
-
CSE:
|
5 |
-
EMBEDDERS:
|
6 |
-
"smpl_27554":
|
7 |
-
TYPE: vertex_feature
|
8 |
-
NUM_VERTICES: 27554
|
9 |
-
FEATURE_DIM: 256
|
10 |
-
FEATURES_TRAINABLE: False
|
11 |
-
IS_TRAINABLE: True
|
12 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
|
13 |
-
DATASETS:
|
14 |
-
TRAIN:
|
15 |
-
- "densepose_coco_2014_train_cse"
|
16 |
-
- "densepose_coco_2014_valminusminival_cse"
|
17 |
-
TEST:
|
18 |
-
- "densepose_coco_2014_minival_cse"
|
19 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
20 |
-
"0": "smpl_27554"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/Base-DensePose-RCNN-FPN.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
VERSION: 2
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
4 |
-
BACKBONE:
|
5 |
-
NAME: "build_resnet_fpn_backbone"
|
6 |
-
RESNETS:
|
7 |
-
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
8 |
-
FPN:
|
9 |
-
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
10 |
-
ANCHOR_GENERATOR:
|
11 |
-
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
12 |
-
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
13 |
-
RPN:
|
14 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
15 |
-
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
16 |
-
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
17 |
-
# Detectron1 uses 2000 proposals per-batch,
|
18 |
-
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
19 |
-
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
20 |
-
POST_NMS_TOPK_TRAIN: 1000
|
21 |
-
POST_NMS_TOPK_TEST: 1000
|
22 |
-
|
23 |
-
DENSEPOSE_ON: True
|
24 |
-
ROI_HEADS:
|
25 |
-
NAME: "DensePoseROIHeads"
|
26 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
27 |
-
NUM_CLASSES: 1
|
28 |
-
ROI_BOX_HEAD:
|
29 |
-
NAME: "FastRCNNConvFCHead"
|
30 |
-
NUM_FC: 2
|
31 |
-
POOLER_RESOLUTION: 7
|
32 |
-
POOLER_SAMPLING_RATIO: 2
|
33 |
-
POOLER_TYPE: "ROIAlign"
|
34 |
-
ROI_DENSEPOSE_HEAD:
|
35 |
-
NAME: "DensePoseV1ConvXHead"
|
36 |
-
POOLER_TYPE: "ROIAlign"
|
37 |
-
NUM_COARSE_SEGM_CHANNELS: 2
|
38 |
-
PREDICTOR_NAME: "DensePoseEmbeddingPredictor"
|
39 |
-
LOSS_NAME: "DensePoseCseLoss"
|
40 |
-
CSE:
|
41 |
-
# embedding loss, possible values:
|
42 |
-
# - "EmbeddingLoss"
|
43 |
-
# - "SoftEmbeddingLoss"
|
44 |
-
EMBED_LOSS_NAME: "EmbeddingLoss"
|
45 |
-
SOLVER:
|
46 |
-
IMS_PER_BATCH: 16
|
47 |
-
BASE_LR: 0.01
|
48 |
-
STEPS: (60000, 80000)
|
49 |
-
MAX_ITER: 90000
|
50 |
-
WARMUP_FACTOR: 0.1
|
51 |
-
CLIP_GRADIENTS:
|
52 |
-
CLIP_TYPE: norm
|
53 |
-
CLIP_VALUE: 1.0
|
54 |
-
ENABLED: true
|
55 |
-
NORM_TYPE: 2.0
|
56 |
-
INPUT:
|
57 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
58 |
-
DENSEPOSE_EVALUATION:
|
59 |
-
TYPE: cse
|
60 |
-
STORAGE: file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "EmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseV1ConvXHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "EmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseV1ConvXHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "EmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseV1ConvXHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "EmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 1
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
EMBEDDERS:
|
16 |
-
"cat_7466":
|
17 |
-
TYPE: vertex_feature
|
18 |
-
NUM_VERTICES: 7466
|
19 |
-
FEATURE_DIM: 256
|
20 |
-
FEATURES_TRAINABLE: False
|
21 |
-
IS_TRAINABLE: True
|
22 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
23 |
-
"dog_7466":
|
24 |
-
TYPE: vertex_feature
|
25 |
-
NUM_VERTICES: 7466
|
26 |
-
FEATURE_DIM: 256
|
27 |
-
FEATURES_TRAINABLE: False
|
28 |
-
IS_TRAINABLE: True
|
29 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
30 |
-
"sheep_5004":
|
31 |
-
TYPE: vertex_feature
|
32 |
-
NUM_VERTICES: 5004
|
33 |
-
FEATURE_DIM: 256
|
34 |
-
FEATURES_TRAINABLE: False
|
35 |
-
IS_TRAINABLE: True
|
36 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
37 |
-
"horse_5004":
|
38 |
-
TYPE: vertex_feature
|
39 |
-
NUM_VERTICES: 5004
|
40 |
-
FEATURE_DIM: 256
|
41 |
-
FEATURES_TRAINABLE: False
|
42 |
-
IS_TRAINABLE: True
|
43 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
44 |
-
"zebra_5002":
|
45 |
-
TYPE: vertex_feature
|
46 |
-
NUM_VERTICES: 5002
|
47 |
-
FEATURE_DIM: 256
|
48 |
-
FEATURES_TRAINABLE: False
|
49 |
-
IS_TRAINABLE: True
|
50 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
51 |
-
"giraffe_5002":
|
52 |
-
TYPE: vertex_feature
|
53 |
-
NUM_VERTICES: 5002
|
54 |
-
FEATURE_DIM: 256
|
55 |
-
FEATURES_TRAINABLE: False
|
56 |
-
IS_TRAINABLE: True
|
57 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
58 |
-
"elephant_5002":
|
59 |
-
TYPE: vertex_feature
|
60 |
-
NUM_VERTICES: 5002
|
61 |
-
FEATURE_DIM: 256
|
62 |
-
FEATURES_TRAINABLE: False
|
63 |
-
IS_TRAINABLE: True
|
64 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
65 |
-
"cow_5002":
|
66 |
-
TYPE: vertex_feature
|
67 |
-
NUM_VERTICES: 5002
|
68 |
-
FEATURE_DIM: 256
|
69 |
-
FEATURES_TRAINABLE: False
|
70 |
-
IS_TRAINABLE: True
|
71 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
72 |
-
"bear_4936":
|
73 |
-
TYPE: vertex_feature
|
74 |
-
NUM_VERTICES: 4936
|
75 |
-
FEATURE_DIM: 256
|
76 |
-
FEATURES_TRAINABLE: False
|
77 |
-
IS_TRAINABLE: True
|
78 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
79 |
-
DATASETS:
|
80 |
-
TRAIN:
|
81 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
82 |
-
TEST:
|
83 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
84 |
-
WHITELISTED_CATEGORIES:
|
85 |
-
"densepose_lvis_v1_ds2_train_v1":
|
86 |
-
- 943 # sheep
|
87 |
-
- 1202 # zebra
|
88 |
-
- 569 # horse
|
89 |
-
- 496 # giraffe
|
90 |
-
- 422 # elephant
|
91 |
-
- 80 # cow
|
92 |
-
- 76 # bear
|
93 |
-
- 225 # cat
|
94 |
-
- 378 # dog
|
95 |
-
"densepose_lvis_v1_ds2_val_v1":
|
96 |
-
- 943 # sheep
|
97 |
-
- 1202 # zebra
|
98 |
-
- 569 # horse
|
99 |
-
- 496 # giraffe
|
100 |
-
- 422 # elephant
|
101 |
-
- 80 # cow
|
102 |
-
- 76 # bear
|
103 |
-
- 225 # cat
|
104 |
-
- 378 # dog
|
105 |
-
CATEGORY_MAPS:
|
106 |
-
"densepose_lvis_v1_ds2_train_v1":
|
107 |
-
"1202": 943 # zebra -> sheep
|
108 |
-
"569": 943 # horse -> sheep
|
109 |
-
"496": 943 # giraffe -> sheep
|
110 |
-
"422": 943 # elephant -> sheep
|
111 |
-
"80": 943 # cow -> sheep
|
112 |
-
"76": 943 # bear -> sheep
|
113 |
-
"225": 943 # cat -> sheep
|
114 |
-
"378": 943 # dog -> sheep
|
115 |
-
"densepose_lvis_v1_ds2_val_v1":
|
116 |
-
"1202": 943 # zebra -> sheep
|
117 |
-
"569": 943 # horse -> sheep
|
118 |
-
"496": 943 # giraffe -> sheep
|
119 |
-
"422": 943 # elephant -> sheep
|
120 |
-
"80": 943 # cow -> sheep
|
121 |
-
"76": 943 # bear -> sheep
|
122 |
-
"225": 943 # cat -> sheep
|
123 |
-
"378": 943 # dog -> sheep
|
124 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
125 |
-
# Note: different classes are mapped to a single class
|
126 |
-
# mesh is chosen based on GT data, so this is just some
|
127 |
-
# value which has no particular meaning
|
128 |
-
"0": "sheep_5004"
|
129 |
-
SOLVER:
|
130 |
-
MAX_ITER: 16000
|
131 |
-
STEPS: (12000, 14000)
|
132 |
-
DENSEPOSE_EVALUATION:
|
133 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 1
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
EMBEDDERS:
|
16 |
-
"cat_5001":
|
17 |
-
TYPE: vertex_feature
|
18 |
-
NUM_VERTICES: 5001
|
19 |
-
FEATURE_DIM: 256
|
20 |
-
FEATURES_TRAINABLE: False
|
21 |
-
IS_TRAINABLE: True
|
22 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
|
23 |
-
"dog_5002":
|
24 |
-
TYPE: vertex_feature
|
25 |
-
NUM_VERTICES: 5002
|
26 |
-
FEATURE_DIM: 256
|
27 |
-
FEATURES_TRAINABLE: False
|
28 |
-
IS_TRAINABLE: True
|
29 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
|
30 |
-
"sheep_5004":
|
31 |
-
TYPE: vertex_feature
|
32 |
-
NUM_VERTICES: 5004
|
33 |
-
FEATURE_DIM: 256
|
34 |
-
FEATURES_TRAINABLE: False
|
35 |
-
IS_TRAINABLE: True
|
36 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
37 |
-
"horse_5004":
|
38 |
-
TYPE: vertex_feature
|
39 |
-
NUM_VERTICES: 5004
|
40 |
-
FEATURE_DIM: 256
|
41 |
-
FEATURES_TRAINABLE: False
|
42 |
-
IS_TRAINABLE: True
|
43 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
44 |
-
"zebra_5002":
|
45 |
-
TYPE: vertex_feature
|
46 |
-
NUM_VERTICES: 5002
|
47 |
-
FEATURE_DIM: 256
|
48 |
-
FEATURES_TRAINABLE: False
|
49 |
-
IS_TRAINABLE: True
|
50 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
51 |
-
"giraffe_5002":
|
52 |
-
TYPE: vertex_feature
|
53 |
-
NUM_VERTICES: 5002
|
54 |
-
FEATURE_DIM: 256
|
55 |
-
FEATURES_TRAINABLE: False
|
56 |
-
IS_TRAINABLE: True
|
57 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
58 |
-
"elephant_5002":
|
59 |
-
TYPE: vertex_feature
|
60 |
-
NUM_VERTICES: 5002
|
61 |
-
FEATURE_DIM: 256
|
62 |
-
FEATURES_TRAINABLE: False
|
63 |
-
IS_TRAINABLE: True
|
64 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
65 |
-
"cow_5002":
|
66 |
-
TYPE: vertex_feature
|
67 |
-
NUM_VERTICES: 5002
|
68 |
-
FEATURE_DIM: 256
|
69 |
-
FEATURES_TRAINABLE: False
|
70 |
-
IS_TRAINABLE: True
|
71 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
72 |
-
"bear_4936":
|
73 |
-
TYPE: vertex_feature
|
74 |
-
NUM_VERTICES: 4936
|
75 |
-
FEATURE_DIM: 256
|
76 |
-
FEATURES_TRAINABLE: False
|
77 |
-
IS_TRAINABLE: True
|
78 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
79 |
-
DATASETS:
|
80 |
-
TRAIN:
|
81 |
-
- "densepose_lvis_v1_ds1_train_v1"
|
82 |
-
TEST:
|
83 |
-
- "densepose_lvis_v1_ds1_val_v1"
|
84 |
-
WHITELISTED_CATEGORIES:
|
85 |
-
"densepose_lvis_v1_ds1_train_v1":
|
86 |
-
- 943 # sheep
|
87 |
-
- 1202 # zebra
|
88 |
-
- 569 # horse
|
89 |
-
- 496 # giraffe
|
90 |
-
- 422 # elephant
|
91 |
-
- 80 # cow
|
92 |
-
- 76 # bear
|
93 |
-
- 225 # cat
|
94 |
-
- 378 # dog
|
95 |
-
"densepose_lvis_v1_ds1_val_v1":
|
96 |
-
- 943 # sheep
|
97 |
-
- 1202 # zebra
|
98 |
-
- 569 # horse
|
99 |
-
- 496 # giraffe
|
100 |
-
- 422 # elephant
|
101 |
-
- 80 # cow
|
102 |
-
- 76 # bear
|
103 |
-
- 225 # cat
|
104 |
-
- 378 # dog
|
105 |
-
CATEGORY_MAPS:
|
106 |
-
"densepose_lvis_v1_ds1_train_v1":
|
107 |
-
"1202": 943 # zebra -> sheep
|
108 |
-
"569": 943 # horse -> sheep
|
109 |
-
"496": 943 # giraffe -> sheep
|
110 |
-
"422": 943 # elephant -> sheep
|
111 |
-
"80": 943 # cow -> sheep
|
112 |
-
"76": 943 # bear -> sheep
|
113 |
-
"225": 943 # cat -> sheep
|
114 |
-
"378": 943 # dog -> sheep
|
115 |
-
"densepose_lvis_v1_ds1_val_v1":
|
116 |
-
"1202": 943 # zebra -> sheep
|
117 |
-
"569": 943 # horse -> sheep
|
118 |
-
"496": 943 # giraffe -> sheep
|
119 |
-
"422": 943 # elephant -> sheep
|
120 |
-
"80": 943 # cow -> sheep
|
121 |
-
"76": 943 # bear -> sheep
|
122 |
-
"225": 943 # cat -> sheep
|
123 |
-
"378": 943 # dog -> sheep
|
124 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
125 |
-
# Note: different classes are mapped to a single class
|
126 |
-
# mesh is chosen based on GT data, so this is just some
|
127 |
-
# value which has no particular meaning
|
128 |
-
"0": "sheep_5004"
|
129 |
-
SOLVER:
|
130 |
-
MAX_ITER: 4000
|
131 |
-
STEPS: (3000, 3500)
|
132 |
-
DENSEPOSE_EVALUATION:
|
133 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
EMBEDDERS:
|
16 |
-
"cat_7466":
|
17 |
-
TYPE: vertex_feature
|
18 |
-
NUM_VERTICES: 7466
|
19 |
-
FEATURE_DIM: 256
|
20 |
-
FEATURES_TRAINABLE: False
|
21 |
-
IS_TRAINABLE: True
|
22 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
23 |
-
"dog_7466":
|
24 |
-
TYPE: vertex_feature
|
25 |
-
NUM_VERTICES: 7466
|
26 |
-
FEATURE_DIM: 256
|
27 |
-
FEATURES_TRAINABLE: False
|
28 |
-
IS_TRAINABLE: True
|
29 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
30 |
-
"sheep_5004":
|
31 |
-
TYPE: vertex_feature
|
32 |
-
NUM_VERTICES: 5004
|
33 |
-
FEATURE_DIM: 256
|
34 |
-
FEATURES_TRAINABLE: False
|
35 |
-
IS_TRAINABLE: True
|
36 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
37 |
-
"horse_5004":
|
38 |
-
TYPE: vertex_feature
|
39 |
-
NUM_VERTICES: 5004
|
40 |
-
FEATURE_DIM: 256
|
41 |
-
FEATURES_TRAINABLE: False
|
42 |
-
IS_TRAINABLE: True
|
43 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
44 |
-
"zebra_5002":
|
45 |
-
TYPE: vertex_feature
|
46 |
-
NUM_VERTICES: 5002
|
47 |
-
FEATURE_DIM: 256
|
48 |
-
FEATURES_TRAINABLE: False
|
49 |
-
IS_TRAINABLE: True
|
50 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
51 |
-
"giraffe_5002":
|
52 |
-
TYPE: vertex_feature
|
53 |
-
NUM_VERTICES: 5002
|
54 |
-
FEATURE_DIM: 256
|
55 |
-
FEATURES_TRAINABLE: False
|
56 |
-
IS_TRAINABLE: True
|
57 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
58 |
-
"elephant_5002":
|
59 |
-
TYPE: vertex_feature
|
60 |
-
NUM_VERTICES: 5002
|
61 |
-
FEATURE_DIM: 256
|
62 |
-
FEATURES_TRAINABLE: False
|
63 |
-
IS_TRAINABLE: True
|
64 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
65 |
-
"cow_5002":
|
66 |
-
TYPE: vertex_feature
|
67 |
-
NUM_VERTICES: 5002
|
68 |
-
FEATURE_DIM: 256
|
69 |
-
FEATURES_TRAINABLE: False
|
70 |
-
IS_TRAINABLE: True
|
71 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
72 |
-
"bear_4936":
|
73 |
-
TYPE: vertex_feature
|
74 |
-
NUM_VERTICES: 4936
|
75 |
-
FEATURE_DIM: 256
|
76 |
-
FEATURES_TRAINABLE: False
|
77 |
-
IS_TRAINABLE: True
|
78 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
79 |
-
DATASETS:
|
80 |
-
TRAIN:
|
81 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
82 |
-
TEST:
|
83 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
84 |
-
WHITELISTED_CATEGORIES:
|
85 |
-
"densepose_lvis_v1_ds2_train_v1":
|
86 |
-
- 943 # sheep
|
87 |
-
- 1202 # zebra
|
88 |
-
- 569 # horse
|
89 |
-
- 496 # giraffe
|
90 |
-
- 422 # elephant
|
91 |
-
- 80 # cow
|
92 |
-
- 76 # bear
|
93 |
-
- 225 # cat
|
94 |
-
- 378 # dog
|
95 |
-
"densepose_lvis_v1_ds2_val_v1":
|
96 |
-
- 943 # sheep
|
97 |
-
- 1202 # zebra
|
98 |
-
- 569 # horse
|
99 |
-
- 496 # giraffe
|
100 |
-
- 422 # elephant
|
101 |
-
- 80 # cow
|
102 |
-
- 76 # bear
|
103 |
-
- 225 # cat
|
104 |
-
- 378 # dog
|
105 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
106 |
-
"0": "bear_4936"
|
107 |
-
"1": "cow_5002"
|
108 |
-
"2": "cat_7466"
|
109 |
-
"3": "dog_7466"
|
110 |
-
"4": "elephant_5002"
|
111 |
-
"5": "giraffe_5002"
|
112 |
-
"6": "horse_5004"
|
113 |
-
"7": "sheep_5004"
|
114 |
-
"8": "zebra_5002"
|
115 |
-
SOLVER:
|
116 |
-
MAX_ITER: 16000
|
117 |
-
STEPS: (12000, 14000)
|
118 |
-
DENSEPOSE_EVALUATION:
|
119 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
PIX_TO_SHAPE_CYCLE_LOSS:
|
16 |
-
ENABLED: True
|
17 |
-
EMBEDDERS:
|
18 |
-
"cat_7466":
|
19 |
-
TYPE: vertex_feature
|
20 |
-
NUM_VERTICES: 7466
|
21 |
-
FEATURE_DIM: 256
|
22 |
-
FEATURES_TRAINABLE: False
|
23 |
-
IS_TRAINABLE: True
|
24 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
25 |
-
"dog_7466":
|
26 |
-
TYPE: vertex_feature
|
27 |
-
NUM_VERTICES: 7466
|
28 |
-
FEATURE_DIM: 256
|
29 |
-
FEATURES_TRAINABLE: False
|
30 |
-
IS_TRAINABLE: True
|
31 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
32 |
-
"sheep_5004":
|
33 |
-
TYPE: vertex_feature
|
34 |
-
NUM_VERTICES: 5004
|
35 |
-
FEATURE_DIM: 256
|
36 |
-
FEATURES_TRAINABLE: False
|
37 |
-
IS_TRAINABLE: True
|
38 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
39 |
-
"horse_5004":
|
40 |
-
TYPE: vertex_feature
|
41 |
-
NUM_VERTICES: 5004
|
42 |
-
FEATURE_DIM: 256
|
43 |
-
FEATURES_TRAINABLE: False
|
44 |
-
IS_TRAINABLE: True
|
45 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
46 |
-
"zebra_5002":
|
47 |
-
TYPE: vertex_feature
|
48 |
-
NUM_VERTICES: 5002
|
49 |
-
FEATURE_DIM: 256
|
50 |
-
FEATURES_TRAINABLE: False
|
51 |
-
IS_TRAINABLE: True
|
52 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
53 |
-
"giraffe_5002":
|
54 |
-
TYPE: vertex_feature
|
55 |
-
NUM_VERTICES: 5002
|
56 |
-
FEATURE_DIM: 256
|
57 |
-
FEATURES_TRAINABLE: False
|
58 |
-
IS_TRAINABLE: True
|
59 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
60 |
-
"elephant_5002":
|
61 |
-
TYPE: vertex_feature
|
62 |
-
NUM_VERTICES: 5002
|
63 |
-
FEATURE_DIM: 256
|
64 |
-
FEATURES_TRAINABLE: False
|
65 |
-
IS_TRAINABLE: True
|
66 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
67 |
-
"cow_5002":
|
68 |
-
TYPE: vertex_feature
|
69 |
-
NUM_VERTICES: 5002
|
70 |
-
FEATURE_DIM: 256
|
71 |
-
FEATURES_TRAINABLE: False
|
72 |
-
IS_TRAINABLE: True
|
73 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
74 |
-
"bear_4936":
|
75 |
-
TYPE: vertex_feature
|
76 |
-
NUM_VERTICES: 4936
|
77 |
-
FEATURE_DIM: 256
|
78 |
-
FEATURES_TRAINABLE: False
|
79 |
-
IS_TRAINABLE: True
|
80 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
81 |
-
DATASETS:
|
82 |
-
TRAIN:
|
83 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
84 |
-
TEST:
|
85 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
86 |
-
WHITELISTED_CATEGORIES:
|
87 |
-
"densepose_lvis_v1_ds2_train_v1":
|
88 |
-
- 943 # sheep
|
89 |
-
- 1202 # zebra
|
90 |
-
- 569 # horse
|
91 |
-
- 496 # giraffe
|
92 |
-
- 422 # elephant
|
93 |
-
- 80 # cow
|
94 |
-
- 76 # bear
|
95 |
-
- 225 # cat
|
96 |
-
- 378 # dog
|
97 |
-
"densepose_lvis_v1_ds2_val_v1":
|
98 |
-
- 943 # sheep
|
99 |
-
- 1202 # zebra
|
100 |
-
- 569 # horse
|
101 |
-
- 496 # giraffe
|
102 |
-
- 422 # elephant
|
103 |
-
- 80 # cow
|
104 |
-
- 76 # bear
|
105 |
-
- 225 # cat
|
106 |
-
- 378 # dog
|
107 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
108 |
-
"0": "bear_4936"
|
109 |
-
"1": "cow_5002"
|
110 |
-
"2": "cat_7466"
|
111 |
-
"3": "dog_7466"
|
112 |
-
"4": "elephant_5002"
|
113 |
-
"5": "giraffe_5002"
|
114 |
-
"6": "horse_5004"
|
115 |
-
"7": "sheep_5004"
|
116 |
-
"8": "zebra_5002"
|
117 |
-
SOLVER:
|
118 |
-
MAX_ITER: 16000
|
119 |
-
STEPS: (12000, 14000)
|
120 |
-
DENSEPOSE_EVALUATION:
|
121 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/267687159/model_final_354e61.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
SHAPE_TO_SHAPE_CYCLE_LOSS:
|
16 |
-
ENABLED: True
|
17 |
-
EMBEDDERS:
|
18 |
-
"cat_7466":
|
19 |
-
TYPE: vertex_feature
|
20 |
-
NUM_VERTICES: 7466
|
21 |
-
FEATURE_DIM: 256
|
22 |
-
FEATURES_TRAINABLE: False
|
23 |
-
IS_TRAINABLE: True
|
24 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
25 |
-
"dog_7466":
|
26 |
-
TYPE: vertex_feature
|
27 |
-
NUM_VERTICES: 7466
|
28 |
-
FEATURE_DIM: 256
|
29 |
-
FEATURES_TRAINABLE: False
|
30 |
-
IS_TRAINABLE: True
|
31 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
32 |
-
"sheep_5004":
|
33 |
-
TYPE: vertex_feature
|
34 |
-
NUM_VERTICES: 5004
|
35 |
-
FEATURE_DIM: 256
|
36 |
-
FEATURES_TRAINABLE: False
|
37 |
-
IS_TRAINABLE: True
|
38 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
39 |
-
"horse_5004":
|
40 |
-
TYPE: vertex_feature
|
41 |
-
NUM_VERTICES: 5004
|
42 |
-
FEATURE_DIM: 256
|
43 |
-
FEATURES_TRAINABLE: False
|
44 |
-
IS_TRAINABLE: True
|
45 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
46 |
-
"zebra_5002":
|
47 |
-
TYPE: vertex_feature
|
48 |
-
NUM_VERTICES: 5002
|
49 |
-
FEATURE_DIM: 256
|
50 |
-
FEATURES_TRAINABLE: False
|
51 |
-
IS_TRAINABLE: True
|
52 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
53 |
-
"giraffe_5002":
|
54 |
-
TYPE: vertex_feature
|
55 |
-
NUM_VERTICES: 5002
|
56 |
-
FEATURE_DIM: 256
|
57 |
-
FEATURES_TRAINABLE: False
|
58 |
-
IS_TRAINABLE: True
|
59 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
60 |
-
"elephant_5002":
|
61 |
-
TYPE: vertex_feature
|
62 |
-
NUM_VERTICES: 5002
|
63 |
-
FEATURE_DIM: 256
|
64 |
-
FEATURES_TRAINABLE: False
|
65 |
-
IS_TRAINABLE: True
|
66 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
67 |
-
"cow_5002":
|
68 |
-
TYPE: vertex_feature
|
69 |
-
NUM_VERTICES: 5002
|
70 |
-
FEATURE_DIM: 256
|
71 |
-
FEATURES_TRAINABLE: False
|
72 |
-
IS_TRAINABLE: True
|
73 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
74 |
-
"bear_4936":
|
75 |
-
TYPE: vertex_feature
|
76 |
-
NUM_VERTICES: 4936
|
77 |
-
FEATURE_DIM: 256
|
78 |
-
FEATURES_TRAINABLE: False
|
79 |
-
IS_TRAINABLE: True
|
80 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
81 |
-
"smpl_27554":
|
82 |
-
TYPE: vertex_feature
|
83 |
-
NUM_VERTICES: 27554
|
84 |
-
FEATURE_DIM: 256
|
85 |
-
FEATURES_TRAINABLE: False
|
86 |
-
IS_TRAINABLE: True
|
87 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
|
88 |
-
DATASETS:
|
89 |
-
TRAIN:
|
90 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
91 |
-
TEST:
|
92 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
93 |
-
WHITELISTED_CATEGORIES:
|
94 |
-
"densepose_lvis_v1_ds2_train_v1":
|
95 |
-
- 943 # sheep
|
96 |
-
- 1202 # zebra
|
97 |
-
- 569 # horse
|
98 |
-
- 496 # giraffe
|
99 |
-
- 422 # elephant
|
100 |
-
- 80 # cow
|
101 |
-
- 76 # bear
|
102 |
-
- 225 # cat
|
103 |
-
- 378 # dog
|
104 |
-
"densepose_lvis_v1_ds2_val_v1":
|
105 |
-
- 943 # sheep
|
106 |
-
- 1202 # zebra
|
107 |
-
- 569 # horse
|
108 |
-
- 496 # giraffe
|
109 |
-
- 422 # elephant
|
110 |
-
- 80 # cow
|
111 |
-
- 76 # bear
|
112 |
-
- 225 # cat
|
113 |
-
- 378 # dog
|
114 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
115 |
-
"0": "bear_4936"
|
116 |
-
"1": "cow_5002"
|
117 |
-
"2": "cat_7466"
|
118 |
-
"3": "dog_7466"
|
119 |
-
"4": "elephant_5002"
|
120 |
-
"5": "giraffe_5002"
|
121 |
-
"6": "horse_5004"
|
122 |
-
"7": "sheep_5004"
|
123 |
-
"8": "zebra_5002"
|
124 |
-
SOLVER:
|
125 |
-
MAX_ITER: 16000
|
126 |
-
STEPS: (12000, 14000)
|
127 |
-
DENSEPOSE_EVALUATION:
|
128 |
-
EVALUATE_MESH_ALIGNMENT: True
|
129 |
-
MESH_ALIGNMENT_MESH_NAMES:
|
130 |
-
- bear_4936
|
131 |
-
- cow_5002
|
132 |
-
- cat_7466
|
133 |
-
- dog_7466
|
134 |
-
- elephant_5002
|
135 |
-
- giraffe_5002
|
136 |
-
- horse_5004
|
137 |
-
- sheep_5004
|
138 |
-
- zebra_5002
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
EMBEDDERS:
|
16 |
-
"cat_7466":
|
17 |
-
TYPE: vertex_feature
|
18 |
-
NUM_VERTICES: 7466
|
19 |
-
FEATURE_DIM: 256
|
20 |
-
FEATURES_TRAINABLE: False
|
21 |
-
IS_TRAINABLE: True
|
22 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
23 |
-
"dog_7466":
|
24 |
-
TYPE: vertex_feature
|
25 |
-
NUM_VERTICES: 7466
|
26 |
-
FEATURE_DIM: 256
|
27 |
-
FEATURES_TRAINABLE: False
|
28 |
-
IS_TRAINABLE: True
|
29 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
30 |
-
"sheep_5004":
|
31 |
-
TYPE: vertex_feature
|
32 |
-
NUM_VERTICES: 5004
|
33 |
-
FEATURE_DIM: 256
|
34 |
-
FEATURES_TRAINABLE: False
|
35 |
-
IS_TRAINABLE: True
|
36 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
37 |
-
"horse_5004":
|
38 |
-
TYPE: vertex_feature
|
39 |
-
NUM_VERTICES: 5004
|
40 |
-
FEATURE_DIM: 256
|
41 |
-
FEATURES_TRAINABLE: False
|
42 |
-
IS_TRAINABLE: True
|
43 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
44 |
-
"zebra_5002":
|
45 |
-
TYPE: vertex_feature
|
46 |
-
NUM_VERTICES: 5002
|
47 |
-
FEATURE_DIM: 256
|
48 |
-
FEATURES_TRAINABLE: False
|
49 |
-
IS_TRAINABLE: True
|
50 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
51 |
-
"giraffe_5002":
|
52 |
-
TYPE: vertex_feature
|
53 |
-
NUM_VERTICES: 5002
|
54 |
-
FEATURE_DIM: 256
|
55 |
-
FEATURES_TRAINABLE: False
|
56 |
-
IS_TRAINABLE: True
|
57 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
58 |
-
"elephant_5002":
|
59 |
-
TYPE: vertex_feature
|
60 |
-
NUM_VERTICES: 5002
|
61 |
-
FEATURE_DIM: 256
|
62 |
-
FEATURES_TRAINABLE: False
|
63 |
-
IS_TRAINABLE: True
|
64 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
65 |
-
"cow_5002":
|
66 |
-
TYPE: vertex_feature
|
67 |
-
NUM_VERTICES: 5002
|
68 |
-
FEATURE_DIM: 256
|
69 |
-
FEATURES_TRAINABLE: False
|
70 |
-
IS_TRAINABLE: True
|
71 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
72 |
-
"bear_4936":
|
73 |
-
TYPE: vertex_feature
|
74 |
-
NUM_VERTICES: 4936
|
75 |
-
FEATURE_DIM: 256
|
76 |
-
FEATURES_TRAINABLE: False
|
77 |
-
IS_TRAINABLE: True
|
78 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
79 |
-
DATASETS:
|
80 |
-
TRAIN:
|
81 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
82 |
-
TEST:
|
83 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
84 |
-
WHITELISTED_CATEGORIES:
|
85 |
-
"densepose_lvis_v1_ds2_train_v1":
|
86 |
-
- 943 # sheep
|
87 |
-
- 1202 # zebra
|
88 |
-
- 569 # horse
|
89 |
-
- 496 # giraffe
|
90 |
-
- 422 # elephant
|
91 |
-
- 80 # cow
|
92 |
-
- 76 # bear
|
93 |
-
- 225 # cat
|
94 |
-
- 378 # dog
|
95 |
-
"densepose_lvis_v1_ds2_val_v1":
|
96 |
-
- 943 # sheep
|
97 |
-
- 1202 # zebra
|
98 |
-
- 569 # horse
|
99 |
-
- 496 # giraffe
|
100 |
-
- 422 # elephant
|
101 |
-
- 80 # cow
|
102 |
-
- 76 # bear
|
103 |
-
- 225 # cat
|
104 |
-
- 378 # dog
|
105 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
106 |
-
"0": "bear_4936"
|
107 |
-
"1": "cow_5002"
|
108 |
-
"2": "cat_7466"
|
109 |
-
"3": "dog_7466"
|
110 |
-
"4": "elephant_5002"
|
111 |
-
"5": "giraffe_5002"
|
112 |
-
"6": "horse_5004"
|
113 |
-
"7": "sheep_5004"
|
114 |
-
"8": "zebra_5002"
|
115 |
-
SOLVER:
|
116 |
-
MAX_ITER: 16000
|
117 |
-
STEPS: (12000, 14000)
|
118 |
-
DENSEPOSE_EVALUATION:
|
119 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
14 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
EMBEDDERS:
|
16 |
-
"cat_5001":
|
17 |
-
TYPE: vertex_feature
|
18 |
-
NUM_VERTICES: 5001
|
19 |
-
FEATURE_DIM: 256
|
20 |
-
FEATURES_TRAINABLE: False
|
21 |
-
IS_TRAINABLE: True
|
22 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
|
23 |
-
"dog_5002":
|
24 |
-
TYPE: vertex_feature
|
25 |
-
NUM_VERTICES: 5002
|
26 |
-
FEATURE_DIM: 256
|
27 |
-
FEATURES_TRAINABLE: False
|
28 |
-
IS_TRAINABLE: True
|
29 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
|
30 |
-
"sheep_5004":
|
31 |
-
TYPE: vertex_feature
|
32 |
-
NUM_VERTICES: 5004
|
33 |
-
FEATURE_DIM: 256
|
34 |
-
FEATURES_TRAINABLE: False
|
35 |
-
IS_TRAINABLE: True
|
36 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
37 |
-
"horse_5004":
|
38 |
-
TYPE: vertex_feature
|
39 |
-
NUM_VERTICES: 5004
|
40 |
-
FEATURE_DIM: 256
|
41 |
-
FEATURES_TRAINABLE: False
|
42 |
-
IS_TRAINABLE: True
|
43 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
44 |
-
"zebra_5002":
|
45 |
-
TYPE: vertex_feature
|
46 |
-
NUM_VERTICES: 5002
|
47 |
-
FEATURE_DIM: 256
|
48 |
-
FEATURES_TRAINABLE: False
|
49 |
-
IS_TRAINABLE: True
|
50 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
51 |
-
"giraffe_5002":
|
52 |
-
TYPE: vertex_feature
|
53 |
-
NUM_VERTICES: 5002
|
54 |
-
FEATURE_DIM: 256
|
55 |
-
FEATURES_TRAINABLE: False
|
56 |
-
IS_TRAINABLE: True
|
57 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
58 |
-
"elephant_5002":
|
59 |
-
TYPE: vertex_feature
|
60 |
-
NUM_VERTICES: 5002
|
61 |
-
FEATURE_DIM: 256
|
62 |
-
FEATURES_TRAINABLE: False
|
63 |
-
IS_TRAINABLE: True
|
64 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
65 |
-
"cow_5002":
|
66 |
-
TYPE: vertex_feature
|
67 |
-
NUM_VERTICES: 5002
|
68 |
-
FEATURE_DIM: 256
|
69 |
-
FEATURES_TRAINABLE: False
|
70 |
-
IS_TRAINABLE: True
|
71 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
72 |
-
"bear_4936":
|
73 |
-
TYPE: vertex_feature
|
74 |
-
NUM_VERTICES: 4936
|
75 |
-
FEATURE_DIM: 256
|
76 |
-
FEATURES_TRAINABLE: False
|
77 |
-
IS_TRAINABLE: True
|
78 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
79 |
-
DATASETS:
|
80 |
-
TRAIN:
|
81 |
-
- "densepose_lvis_v1_ds1_train_v1"
|
82 |
-
TEST:
|
83 |
-
- "densepose_lvis_v1_ds1_val_v1"
|
84 |
-
WHITELISTED_CATEGORIES:
|
85 |
-
"densepose_lvis_v1_ds1_train_v1":
|
86 |
-
- 943 # sheep
|
87 |
-
- 1202 # zebra
|
88 |
-
- 569 # horse
|
89 |
-
- 496 # giraffe
|
90 |
-
- 422 # elephant
|
91 |
-
- 80 # cow
|
92 |
-
- 76 # bear
|
93 |
-
- 225 # cat
|
94 |
-
- 378 # dog
|
95 |
-
"densepose_lvis_v1_ds1_val_v1":
|
96 |
-
- 943 # sheep
|
97 |
-
- 1202 # zebra
|
98 |
-
- 569 # horse
|
99 |
-
- 496 # giraffe
|
100 |
-
- 422 # elephant
|
101 |
-
- 80 # cow
|
102 |
-
- 76 # bear
|
103 |
-
- 225 # cat
|
104 |
-
- 378 # dog
|
105 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
106 |
-
"0": "bear_4936"
|
107 |
-
"1": "cow_5002"
|
108 |
-
"2": "cat_5001"
|
109 |
-
"3": "dog_5002"
|
110 |
-
"4": "elephant_5002"
|
111 |
-
"5": "giraffe_5002"
|
112 |
-
"6": "horse_5004"
|
113 |
-
"7": "sheep_5004"
|
114 |
-
"8": "zebra_5002"
|
115 |
-
SOLVER:
|
116 |
-
MAX_ITER: 4000
|
117 |
-
STEPS: (3000, 3500)
|
118 |
-
DENSEPOSE_EVALUATION:
|
119 |
-
EVALUATE_MESH_ALIGNMENT: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_HEADS:
|
7 |
-
NUM_CLASSES: 9
|
8 |
-
ROI_DENSEPOSE_HEAD:
|
9 |
-
NAME: "DensePoseV1ConvXHead"
|
10 |
-
COARSE_SEGM_TRAINED_BY_MASKS: True
|
11 |
-
CSE:
|
12 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
13 |
-
EMBED_LOSS_WEIGHT: 0.0
|
14 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
15 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
16 |
-
EMBEDDERS:
|
17 |
-
"cat_7466":
|
18 |
-
TYPE: vertex_feature
|
19 |
-
NUM_VERTICES: 7466
|
20 |
-
FEATURE_DIM: 256
|
21 |
-
FEATURES_TRAINABLE: False
|
22 |
-
IS_TRAINABLE: True
|
23 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
|
24 |
-
"dog_7466":
|
25 |
-
TYPE: vertex_feature
|
26 |
-
NUM_VERTICES: 7466
|
27 |
-
FEATURE_DIM: 256
|
28 |
-
FEATURES_TRAINABLE: False
|
29 |
-
IS_TRAINABLE: True
|
30 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
|
31 |
-
"sheep_5004":
|
32 |
-
TYPE: vertex_feature
|
33 |
-
NUM_VERTICES: 5004
|
34 |
-
FEATURE_DIM: 256
|
35 |
-
FEATURES_TRAINABLE: False
|
36 |
-
IS_TRAINABLE: True
|
37 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
|
38 |
-
"horse_5004":
|
39 |
-
TYPE: vertex_feature
|
40 |
-
NUM_VERTICES: 5004
|
41 |
-
FEATURE_DIM: 256
|
42 |
-
FEATURES_TRAINABLE: False
|
43 |
-
IS_TRAINABLE: True
|
44 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
|
45 |
-
"zebra_5002":
|
46 |
-
TYPE: vertex_feature
|
47 |
-
NUM_VERTICES: 5002
|
48 |
-
FEATURE_DIM: 256
|
49 |
-
FEATURES_TRAINABLE: False
|
50 |
-
IS_TRAINABLE: True
|
51 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
|
52 |
-
"giraffe_5002":
|
53 |
-
TYPE: vertex_feature
|
54 |
-
NUM_VERTICES: 5002
|
55 |
-
FEATURE_DIM: 256
|
56 |
-
FEATURES_TRAINABLE: False
|
57 |
-
IS_TRAINABLE: True
|
58 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
|
59 |
-
"elephant_5002":
|
60 |
-
TYPE: vertex_feature
|
61 |
-
NUM_VERTICES: 5002
|
62 |
-
FEATURE_DIM: 256
|
63 |
-
FEATURES_TRAINABLE: False
|
64 |
-
IS_TRAINABLE: True
|
65 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
|
66 |
-
"cow_5002":
|
67 |
-
TYPE: vertex_feature
|
68 |
-
NUM_VERTICES: 5002
|
69 |
-
FEATURE_DIM: 256
|
70 |
-
FEATURES_TRAINABLE: False
|
71 |
-
IS_TRAINABLE: True
|
72 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
|
73 |
-
"bear_4936":
|
74 |
-
TYPE: vertex_feature
|
75 |
-
NUM_VERTICES: 4936
|
76 |
-
FEATURE_DIM: 256
|
77 |
-
FEATURES_TRAINABLE: False
|
78 |
-
IS_TRAINABLE: True
|
79 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
|
80 |
-
DATASETS:
|
81 |
-
TRAIN:
|
82 |
-
- "densepose_lvis_v1_ds2_train_v1"
|
83 |
-
TEST:
|
84 |
-
- "densepose_lvis_v1_ds2_val_v1"
|
85 |
-
WHITELISTED_CATEGORIES:
|
86 |
-
"densepose_lvis_v1_ds2_train_v1":
|
87 |
-
- 943 # sheep
|
88 |
-
- 1202 # zebra
|
89 |
-
- 569 # horse
|
90 |
-
- 496 # giraffe
|
91 |
-
- 422 # elephant
|
92 |
-
- 80 # cow
|
93 |
-
- 76 # bear
|
94 |
-
- 225 # cat
|
95 |
-
- 378 # dog
|
96 |
-
"densepose_lvis_v1_ds2_val_v1":
|
97 |
-
- 943 # sheep
|
98 |
-
- 1202 # zebra
|
99 |
-
- 569 # horse
|
100 |
-
- 496 # giraffe
|
101 |
-
- 422 # elephant
|
102 |
-
- 80 # cow
|
103 |
-
- 76 # bear
|
104 |
-
- 225 # cat
|
105 |
-
- 378 # dog
|
106 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
107 |
-
"0": "bear_4936"
|
108 |
-
"1": "cow_5002"
|
109 |
-
"2": "cat_7466"
|
110 |
-
"3": "dog_7466"
|
111 |
-
"4": "elephant_5002"
|
112 |
-
"5": "giraffe_5002"
|
113 |
-
"6": "horse_5004"
|
114 |
-
"7": "sheep_5004"
|
115 |
-
"8": "zebra_5002"
|
116 |
-
SOLVER:
|
117 |
-
MAX_ITER: 24000
|
118 |
-
STEPS: (20000, 22000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseV1ConvXHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
10 |
-
EMBEDDING_DIST_GAUSS_SIGMA: 0.1
|
11 |
-
GEODESIC_DIST_GAUSS_SIGMA: 0.1
|
12 |
-
EMBEDDERS:
|
13 |
-
"chimp_5029":
|
14 |
-
TYPE: vertex_feature
|
15 |
-
NUM_VERTICES: 5029
|
16 |
-
FEATURE_DIM: 256
|
17 |
-
FEATURES_TRAINABLE: False
|
18 |
-
IS_TRAINABLE: True
|
19 |
-
INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_chimp_5029_256.pkl"
|
20 |
-
DATASETS:
|
21 |
-
TRAIN:
|
22 |
-
- "densepose_chimps_cse_train"
|
23 |
-
TEST:
|
24 |
-
- "densepose_chimps_cse_val"
|
25 |
-
CLASS_TO_MESH_NAME_MAPPING:
|
26 |
-
"0": "chimp_5029"
|
27 |
-
SOLVER:
|
28 |
-
MAX_ITER: 4000
|
29 |
-
STEPS: (3000, 3500)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseV1ConvXHead"
|
8 |
-
CSE:
|
9 |
-
EMBED_LOSS_NAME: "SoftEmbeddingLoss"
|
10 |
-
SOLVER:
|
11 |
-
MAX_ITER: 130000
|
12 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "iid_iso"
|
11 |
-
SEGM_CONFIDENCE:
|
12 |
-
ENABLED: True
|
13 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
14 |
-
SOLVER:
|
15 |
-
CLIP_GRADIENTS:
|
16 |
-
ENABLED: True
|
17 |
-
MAX_ITER: 130000
|
18 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "iid_iso"
|
11 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
12 |
-
SOLVER:
|
13 |
-
CLIP_GRADIENTS:
|
14 |
-
ENABLED: True
|
15 |
-
MAX_ITER: 130000
|
16 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "indep_aniso"
|
11 |
-
SEGM_CONFIDENCE:
|
12 |
-
ENABLED: True
|
13 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
14 |
-
SOLVER:
|
15 |
-
CLIP_GRADIENTS:
|
16 |
-
ENABLED: True
|
17 |
-
MAX_ITER: 130000
|
18 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "indep_aniso"
|
11 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
12 |
-
SOLVER:
|
13 |
-
CLIP_GRADIENTS:
|
14 |
-
ENABLED: True
|
15 |
-
MAX_ITER: 130000
|
16 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
SOLVER:
|
9 |
-
MAX_ITER: 130000
|
10 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
UV_CONFIDENCE:
|
8 |
-
ENABLED: True
|
9 |
-
TYPE: "iid_iso"
|
10 |
-
SEGM_CONFIDENCE:
|
11 |
-
ENABLED: True
|
12 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
13 |
-
SOLVER:
|
14 |
-
CLIP_GRADIENTS:
|
15 |
-
ENABLED: True
|
16 |
-
MAX_ITER: 130000
|
17 |
-
STEPS: (100000, 120000)
|
18 |
-
WARMUP_FACTOR: 0.025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
UV_CONFIDENCE:
|
8 |
-
ENABLED: True
|
9 |
-
TYPE: "iid_iso"
|
10 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
11 |
-
SOLVER:
|
12 |
-
CLIP_GRADIENTS:
|
13 |
-
ENABLED: True
|
14 |
-
MAX_ITER: 130000
|
15 |
-
STEPS: (100000, 120000)
|
16 |
-
WARMUP_FACTOR: 0.025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
UV_CONFIDENCE:
|
8 |
-
ENABLED: True
|
9 |
-
TYPE: "indep_aniso"
|
10 |
-
SEGM_CONFIDENCE:
|
11 |
-
ENABLED: True
|
12 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
13 |
-
SOLVER:
|
14 |
-
CLIP_GRADIENTS:
|
15 |
-
ENABLED: True
|
16 |
-
MAX_ITER: 130000
|
17 |
-
STEPS: (100000, 120000)
|
18 |
-
WARMUP_FACTOR: 0.025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
UV_CONFIDENCE:
|
8 |
-
ENABLED: True
|
9 |
-
TYPE: "indep_aniso"
|
10 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
11 |
-
SOLVER:
|
12 |
-
CLIP_GRADIENTS:
|
13 |
-
ENABLED: True
|
14 |
-
MAX_ITER: 130000
|
15 |
-
STEPS: (100000, 120000)
|
16 |
-
WARMUP_FACTOR: 0.025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_s1x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
SOLVER:
|
7 |
-
MAX_ITER: 130000
|
8 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NUM_COARSE_SEGM_CHANNELS: 15
|
8 |
-
POOLER_RESOLUTION: 14
|
9 |
-
HEATMAP_SIZE: 56
|
10 |
-
INDEX_WEIGHTS: 2.0
|
11 |
-
PART_WEIGHTS: 0.3
|
12 |
-
POINT_REGRESSION_WEIGHTS: 0.1
|
13 |
-
DECODER_ON: False
|
14 |
-
SOLVER:
|
15 |
-
BASE_LR: 0.002
|
16 |
-
MAX_ITER: 130000
|
17 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "iid_iso"
|
11 |
-
SEGM_CONFIDENCE:
|
12 |
-
ENABLED: True
|
13 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
14 |
-
SOLVER:
|
15 |
-
CLIP_GRADIENTS:
|
16 |
-
ENABLED: True
|
17 |
-
MAX_ITER: 130000
|
18 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "iid_iso"
|
11 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
12 |
-
SOLVER:
|
13 |
-
CLIP_GRADIENTS:
|
14 |
-
ENABLED: True
|
15 |
-
MAX_ITER: 130000
|
16 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "indep_aniso"
|
11 |
-
SEGM_CONFIDENCE:
|
12 |
-
ENABLED: True
|
13 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
14 |
-
SOLVER:
|
15 |
-
CLIP_GRADIENTS:
|
16 |
-
ENABLED: True
|
17 |
-
MAX_ITER: 130000
|
18 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
UV_CONFIDENCE:
|
9 |
-
ENABLED: True
|
10 |
-
TYPE: "indep_aniso"
|
11 |
-
POINT_REGRESSION_WEIGHTS: 0.0005
|
12 |
-
SOLVER:
|
13 |
-
CLIP_GRADIENTS:
|
14 |
-
ENABLED: True
|
15 |
-
MAX_ITER: 130000
|
16 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
ROI_DENSEPOSE_HEAD:
|
7 |
-
NAME: "DensePoseDeepLabHead"
|
8 |
-
SOLVER:
|
9 |
-
MAX_ITER: 130000
|
10 |
-
STEPS: (100000, 120000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|