Roxysun commited on
Commit
b51b6a2
1 Parent(s): 8c134e5

cs2no_wav2vec2-large-xls-r-300m-czech-colab

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-lv-60-espeak-cv-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - nb_samtale
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: cs2no_wav2vec2-large-xls-r-300m-czech-colab
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: nb_samtale
18
+ type: nb_samtale
19
+ config: annotations
20
+ split: test
21
+ args: annotations
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.8457142857142858
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # cs2no_wav2vec2-large-xls-r-300m-czech-colab
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the nb_samtale dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 396.8153
36
+ - Wer: 0.8457
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0003
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 500
64
+ - num_epochs: 50
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
71
+ | 3026.3663 | 3.51 | 100 | 472.1026 | 0.9873 |
72
+ | 336.2439 | 7.02 | 200 | 239.3806 | 0.9987 |
73
+ | 208.6184 | 10.53 | 300 | 206.7293 | 0.9917 |
74
+ | 182.6556 | 14.04 | 400 | 221.5585 | 0.8908 |
75
+ | 174.3151 | 17.54 | 500 | 262.3953 | 0.8921 |
76
+ | 140.57 | 21.05 | 600 | 225.9887 | 0.8330 |
77
+ | 114.5967 | 24.56 | 700 | 275.7823 | 0.8495 |
78
+ | 91.2748 | 28.07 | 800 | 314.0284 | 0.8610 |
79
+ | 80.0496 | 31.58 | 900 | 314.4608 | 0.8552 |
80
+ | 66.7338 | 35.09 | 1000 | 326.7965 | 0.8527 |
81
+ | 56.921 | 38.6 | 1100 | 373.0237 | 0.8425 |
82
+ | 50.7125 | 42.11 | 1200 | 374.9553 | 0.8527 |
83
+ | 47.4235 | 45.61 | 1300 | 404.8124 | 0.8489 |
84
+ | 45.1623 | 49.12 | 1400 | 396.8153 | 0.8457 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.35.2
90
+ - Pytorch 2.1.0+cu118
91
+ - Datasets 2.15.0
92
+ - Tokenizers 0.15.0