Sahajtomar commited on
Commit
ac8953c
1 Parent(s): 229b168

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -17,7 +17,8 @@ pipeline_tag: zero-shot-classification
17
 
18
  ## Model Description
19
 
20
- This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base model and fine-tuned it on xnli de dataset
 
21
 
22
  #### Zero-shot classification pipeline
23
 
@@ -25,8 +26,6 @@ This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base
25
  from transformers import pipeline
26
  classifier = pipeline("zero-shot-classification",
27
  model="Sahajtomar/German_Zeroshot")
28
- ##The default hypothesis template is in English: `This text is {}`. While using this model , change it to "In deisem geht es um {}." or something different. While inferencing through huggingface api may give poor results as it uses by default english template. Since model is monolingual and not multilingual, hypothesis template needs to be changed accordingly.
29
-
30
  sequence = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
31
  candidate_labels = ["Verbrechen","Tragödie","Stehlen"]
32
  hypothesis_template = "In deisem geht es um {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented
 
17
 
18
  ## Model Description
19
 
20
+ This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base model and fine-tuned it on xnli de dataset.
21
+ The default hypothesis template is in English: `This text is {}`. While using this model , change it to "In deisem geht es um {}." or something different. While inferencing through huggingface api may give poor results as it uses by default english template. Since model is monolingual and not multilingual, hypothesis template needs to be changed accordingly.
22
 
23
  #### Zero-shot classification pipeline
24
 
 
26
  from transformers import pipeline
27
  classifier = pipeline("zero-shot-classification",
28
  model="Sahajtomar/German_Zeroshot")
 
 
29
  sequence = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
30
  candidate_labels = ["Verbrechen","Tragödie","Stehlen"]
31
  hypothesis_template = "In deisem geht es um {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented