--- language: multilingual tags: - text-classification - pytorch - nli - xnli - de datasets: - xnli pipeline_tag: zero-shot-classification --- # German Zeroshot ## Model Description This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base model and fine-tuned it on xnli de dataset #### Zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Sahajtomar/German_Zeroshot") # we will classify the Russian translation of, "Who are you voting for in 2020?" sequence = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" candidate_labels = ["Verbrechen","Tragödie","Stehlen"] hypothesis_template = "In deisem geht es um {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template) # {'labels': ['politics', 'Europe', 'public health'], # 'scores': [0.9048484563827515, 0.05722189322113991, 0.03792969882488251], # 'sequence': 'За кого вы голосуете в 2020 году?'} ``` The default hypothesis template is the English, `This text is {}`. If you are working strictly within one language, it may be worthwhile to translate this to the language you are working with: ```python sequence_to_classify = "¿A quién vas a votar en 2020?" candidate_labels = ["Europa", "salud pública", "política"] hypothesis_template = "Este ejemplo es {}." classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) """{'labels': ['Tragödie', 'Verbrechen', 'Stehlen'], 'scores': [0.8328856854438782, 0.10494536352157593, 0.06316883927583696], 'sequence': 'Letzte Woche gab es einen Selbstmord in einer nahe gelegenen Kolonie'}""" ```