Sandipan1994 commited on
Commit
a81a557
1 Parent(s): 0bbaf9d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - math_qa
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-mathT5-finetune_qatoexp
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: math_qa
17
+ type: math_qa
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 21.9174
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # t5-small-mathT5-finetune_qatoexp
31
+
32
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the math_qa dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.8677
35
+ - Rouge1: 21.9174
36
+ - Rouge2: 8.4401
37
+ - Rougel: 19.1645
38
+ - Rougelsum: 19.8239
39
+ - Gen Len: 18.9765
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 2e-05
59
+ - train_batch_size: 10
60
+ - eval_batch_size: 10
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 10
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
71
+ | 2.4496 | 1.0 | 2984 | 2.2096 | 19.6477 | 6.508 | 16.9295 | 17.5212 | 18.9064 |
72
+ | 2.2893 | 2.0 | 5968 | 2.0837 | 20.4879 | 7.2528 | 17.7778 | 18.4085 | 18.968 |
73
+ | 2.1869 | 3.0 | 8952 | 2.0125 | 20.8462 | 7.6105 | 18.1516 | 18.8343 | 18.9837 |
74
+ | 2.1456 | 4.0 | 11936 | 1.9633 | 20.7623 | 7.7113 | 18.1274 | 18.783 | 18.9886 |
75
+ | 2.1171 | 5.0 | 14920 | 1.9321 | 21.0648 | 7.8897 | 18.4162 | 19.0551 | 18.9844 |
76
+ | 2.0854 | 6.0 | 17904 | 1.9061 | 21.4445 | 8.0883 | 18.8038 | 19.4176 | 18.9812 |
77
+ | 2.0592 | 7.0 | 20888 | 1.8902 | 21.5714 | 8.2751 | 18.8864 | 19.537 | 18.9772 |
78
+ | 2.0609 | 8.0 | 23872 | 1.8770 | 21.7737 | 8.3297 | 19.022 | 19.6897 | 18.9763 |
79
+ | 2.0285 | 9.0 | 26856 | 1.8701 | 21.964 | 8.4358 | 19.1701 | 19.845 | 18.9747 |
80
+ | 2.0165 | 10.0 | 29840 | 1.8677 | 21.9174 | 8.4401 | 19.1645 | 19.8239 | 18.9765 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.22.2
86
+ - Pytorch 1.12.1+cu113
87
+ - Datasets 2.5.2
88
+ - Tokenizers 0.12.1