ShirinYamani
commited on
Commit
•
069bd91
1
Parent(s):
b3fc640
Update README.md
Browse files
README.md
CHANGED
@@ -1,34 +1,95 @@
|
|
1 |
---
|
2 |
license: llama3
|
3 |
-
library_name:
|
4 |
tags:
|
5 |
-
-
|
|
|
|
|
|
|
6 |
base_model: meta-llama/Meta-Llama-3-8B
|
7 |
model-index:
|
8 |
- name: llama-3-8B-fine-tuned-dora
|
9 |
results: []
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
# llama-3-8B-fine-tuned-dora
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset.
|
18 |
-
|
19 |
-
## Model description
|
20 |
-
|
21 |
-
More information needed
|
22 |
-
|
23 |
-
## Intended uses & limitations
|
24 |
-
|
25 |
-
More information needed
|
26 |
-
|
27 |
-
## Training and evaluation data
|
28 |
-
|
29 |
-
More information needed
|
30 |
-
|
31 |
-
## Training procedure
|
32 |
|
33 |
### Training hyperparameters
|
34 |
|
@@ -45,9 +106,6 @@ The following hyperparameters were used during training:
|
|
45 |
- training_steps: 10
|
46 |
- mixed_precision_training: Native AMP
|
47 |
|
48 |
-
### Training results
|
49 |
-
|
50 |
-
|
51 |
|
52 |
### Framework versions
|
53 |
|
|
|
1 |
---
|
2 |
license: llama3
|
3 |
+
library_name: transformers
|
4 |
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
- Dora
|
7 |
+
- Qdora
|
8 |
+
- peft
|
9 |
base_model: meta-llama/Meta-Llama-3-8B
|
10 |
model-index:
|
11 |
- name: llama-3-8B-fine-tuned-dora
|
12 |
results: []
|
13 |
+
datasets:
|
14 |
+
- timdettmers/openassistant-guanaco
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
should probably proofread and complete it, then remove this comment. -->
|
19 |
|
20 |
# llama-3-8B-fine-tuned-dora
|
21 |
+
<img src="https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F4e32b89a-9146-4004-81b4-18c20a913df0_1920x1080.jpeg" alt="im" width="700" />
|
22 |
+
|
23 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on [openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) dataset.
|
24 |
+
For LoraConfig we set the `use_dora=True` for the Dora decomposition and comparison with Lora.
|
25 |
+
|
26 |
+
## Inference
|
27 |
+
```python
|
28 |
+
import os
|
29 |
+
from os.path import exists, join, isdir
|
30 |
+
import torch
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
|
32 |
+
from peft import PeftModel
|
33 |
+
from peft.tuners.lora import LoraLayer
|
34 |
+
import accelerate
|
35 |
+
|
36 |
+
# Update variables!
|
37 |
+
max_new_tokens = 100
|
38 |
+
top_p = 0.9
|
39 |
+
temperature=0.7
|
40 |
+
user_question = "What is central limit theorem?"
|
41 |
+
|
42 |
+
# Base model
|
43 |
+
model_name_or_path = 'meta-llama/Meta-Llama-3-8B' # Change it to 'YOUR_BASE_MODEL'
|
44 |
+
adapter_path = 'ShirinYamani/llama-3-8B-fine-tuned-dora' # Change it to 'YOUR_ADAPTER_PATH'
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
47 |
+
# if you wanna use LLaMA HF then fix the early conversion issues.
|
48 |
+
tokenizer.bos_token_id = 1
|
49 |
+
|
50 |
+
# Load the model (use bf16 for faster inference)
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_name_or_path,
|
53 |
+
torch_dtype=torch.bfloat16,
|
54 |
+
device_map={"": 0},
|
55 |
+
quantization_config=BitsAndBytesConfig(
|
56 |
+
load_in_4bit=True,
|
57 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
58 |
+
bnb_4bit_use_double_quant=True,
|
59 |
+
bnb_4bit_quant_type='nf4',
|
60 |
+
)
|
61 |
+
)
|
62 |
+
|
63 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
64 |
+
model.eval()
|
65 |
+
|
66 |
+
prompt = (
|
67 |
+
"A chat between a curious human and an artificial intelligence assistant. "
|
68 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
69 |
+
"### Human: {user_question}"
|
70 |
+
"### Assistant: "
|
71 |
+
)
|
72 |
+
|
73 |
+
def generate(model, user_question, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature):
|
74 |
+
inputs = tokenizer(prompt.format(user_question=user_question), return_tensors="pt").to('cuda')
|
75 |
+
|
76 |
+
outputs = model.generate(
|
77 |
+
**inputs,
|
78 |
+
generation_config=GenerationConfig(
|
79 |
+
do_sample=True,
|
80 |
+
max_new_tokens=max_new_tokens,
|
81 |
+
top_p=top_p,
|
82 |
+
temperature=temperature,
|
83 |
+
)
|
84 |
+
)
|
85 |
+
|
86 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
+
#print(text)
|
88 |
+
return text
|
89 |
+
|
90 |
+
generate(model, user_question)
|
91 |
+
```
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
### Training hyperparameters
|
95 |
|
|
|
106 |
- training_steps: 10
|
107 |
- mixed_precision_training: Native AMP
|
108 |
|
|
|
|
|
|
|
109 |
|
110 |
### Framework versions
|
111 |
|