init
Browse files- LICENSE +201 -0
- MODEL_LICENSE +31 -0
- README.md +30 -0
- added_tokens.json +10 -0
- config.json +35 -0
- configuration_glm.py +138 -0
- merges.txt +0 -0
- modeling_glm.py +975 -0
- pytorch_model.bin +3 -0
- tokenization_glm.py +362 -0
- tokenizer_config.json +18 -0
- vocab.json +0 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright Hanyu Lai, Hao Yu, Xiao Liu
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
MODEL_LICENSE
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. Definitions
|
2 |
+
|
3 |
+
“Licensor” means the WebGLM Team that distributes its Software.
|
4 |
+
|
5 |
+
“Software” means the WebGLM model parameters and data made available under this license.
|
6 |
+
|
7 |
+
2. License Grant
|
8 |
+
|
9 |
+
Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software solely for your non-commercial research purposes.
|
10 |
+
|
11 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
3. Restriction
|
14 |
+
|
15 |
+
You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any commercial, military, or illegal purposes.
|
16 |
+
|
17 |
+
You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
|
18 |
+
|
19 |
+
4. Disclaimer
|
20 |
+
|
21 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
22 |
+
|
23 |
+
5. Limitation of Liability
|
24 |
+
|
25 |
+
EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
26 |
+
|
27 |
+
6. Dispute Resolution
|
28 |
+
|
29 |
+
This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
|
30 |
+
|
31 |
+
Note that the license is subject to update to a more comprehensive version.
|
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- glm
|
6 |
+
- webglm
|
7 |
+
- thudm
|
8 |
+
---
|
9 |
+
|
10 |
+
<h1>WebGLM: Towards An Efficient Web-enhanced Question Answering System with Human Preference</h1>
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
📃 <a href="https://arxiv.org/pdf/2306.07906.pdf" target="_blank">Paper (KDD 2023)</a>
|
14 |
+
|
|
15 |
+
💻 <a href="https://github.com/THUDM/WebGLM" target="_blank">Github Repo</a>
|
16 |
+
</p>
|
17 |
+
|
18 |
+
# Introduction
|
19 |
+
|
20 |
+
WebGLM-2B aspires to provide an efficient and cost-effective web-enhanced question-answering system using the 2-billion-parameter General Language Model (GLM). It aims to improve real-world application deployment by integrating web search and retrieval capabilities into the pre-trained language model.
|
21 |
+
|
22 |
+
WebGLM is built by the following parts:
|
23 |
+
|
24 |
+
- **LLM-augmented Retriever**: Enhances the retrieval of relevant web content to better aid in answering questions accurately.
|
25 |
+
- **Bootstrapped Generator**: Generates human-like responses to questions, leveraging the power of the GLM to provide refined answers.
|
26 |
+
- **Human Preference-aware Scorer**: Estimates the quality of generated responses by prioritizing human preferences, ensuring the system produces useful and engaging content.
|
27 |
+
|
28 |
+
This repo is the implementation of **Bootstrap Generator**.
|
29 |
+
|
30 |
+
See our [Github Repo](https://github.com/THUDM/WebGLM) for more detailed usage.
|
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|startofpiece|>": 50257,
|
3 |
+
"<|endofpiece|>": 50258,
|
4 |
+
"[CLS]": 50259,
|
5 |
+
"[MASK]": 50260,
|
6 |
+
"[SEP]": 50261,
|
7 |
+
"[UNUSED]": 50262,
|
8 |
+
"[gMASK]": 50263,
|
9 |
+
"[sMASK]": 50264
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/glm-2b",
|
3 |
+
"architectures": [
|
4 |
+
"GLMModel"
|
5 |
+
],
|
6 |
+
"attention_dropout_prob": 0.1,
|
7 |
+
"attention_scale": 1.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_glm.GLMConfig",
|
10 |
+
"AutoModel": "modeling_glm.GLMModel",
|
11 |
+
"AutoModelForSeq2SeqLM": "modeling_glm.GLMForConditionalGeneration",
|
12 |
+
"AutoModelForMultipleChoice": "modeling_glm.GLMForMultipleChoice",
|
13 |
+
"AutoModelForSequenceClassification": "modeling_glm.GLMForSequenceClassification"
|
14 |
+
},
|
15 |
+
"block_position_encoding": true,
|
16 |
+
"checkpoint_activations": false,
|
17 |
+
"checkpoint_num_layers": 1,
|
18 |
+
"embedding_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 2048,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"max_sequence_length": 1024,
|
22 |
+
"model_type": "glm",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_layers": 36,
|
25 |
+
"output_dropout_prob": 0.1,
|
26 |
+
"output_predict": true,
|
27 |
+
"parallel_output": true,
|
28 |
+
"pool_token": "cls",
|
29 |
+
"relative_encoding": false,
|
30 |
+
"spell_func": "lstm",
|
31 |
+
"spell_length": null,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.23.1",
|
34 |
+
"vocab_size": 50304
|
35 |
+
}
|
configuration_glm.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache` License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GLM model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json",
|
24 |
+
# See all GLM models at https://huggingface.co/models?filter=glm
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class GLMConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`~GLMModel`].
|
31 |
+
It is used to instantiate an GLM model according to the specified arguments, defining the model
|
32 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
33 |
+
the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
36 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
37 |
+
for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`~GLMModel`] or
|
44 |
+
[`~TFGLMModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimension of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
52 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
55 |
+
If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
61 |
+
The maximum sequence length that this model might ever be used with.
|
62 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or
|
65 |
+
[`~TFGLMModel`].
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
69 |
+
The epsilon used by the layer normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
Example:
|
74 |
+
|
75 |
+
```python
|
76 |
+
>>> from transformers import GLMModel, GLMConfig
|
77 |
+
|
78 |
+
>>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration
|
79 |
+
>>> configuration = GLMConfig()
|
80 |
+
|
81 |
+
>>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration
|
82 |
+
>>> model = GLMModel(configuration)
|
83 |
+
|
84 |
+
>>> # Accessing the model configuration
|
85 |
+
>>> configuration = model.config
|
86 |
+
```
|
87 |
+
"""
|
88 |
+
model_type = "glm"
|
89 |
+
attribute_map = {
|
90 |
+
"num_hidden_layers": "num_layers"
|
91 |
+
}
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
num_layers=24,
|
96 |
+
vocab_size=30592,
|
97 |
+
hidden_size=1024,
|
98 |
+
num_attention_heads=16,
|
99 |
+
embedding_dropout_prob=0.1,
|
100 |
+
attention_dropout_prob=0.1,
|
101 |
+
output_dropout_prob=0.1,
|
102 |
+
max_sequence_length=512,
|
103 |
+
checkpoint_activations=False,
|
104 |
+
checkpoint_num_layers=1,
|
105 |
+
parallel_output=True,
|
106 |
+
relative_encoding=False,
|
107 |
+
block_position_encoding=True,
|
108 |
+
output_predict=False,
|
109 |
+
spell_length=None,
|
110 |
+
spell_func="lstm",
|
111 |
+
attention_scale=1.0,
|
112 |
+
initializer_range=0.02,
|
113 |
+
pool_token="cls",
|
114 |
+
classifier_dropout=None,
|
115 |
+
**kwargs
|
116 |
+
):
|
117 |
+
self.num_layers = num_layers
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.hidden_size = hidden_size
|
120 |
+
self.num_attention_heads = num_attention_heads
|
121 |
+
self.embedding_dropout_prob = embedding_dropout_prob
|
122 |
+
self.attention_dropout_prob = attention_dropout_prob
|
123 |
+
self.output_dropout_prob = output_dropout_prob
|
124 |
+
self.max_sequence_length = max_sequence_length
|
125 |
+
self.checkpoint_activations = checkpoint_activations
|
126 |
+
self.checkpoint_num_layers = checkpoint_num_layers
|
127 |
+
self.parallel_output = parallel_output
|
128 |
+
self.relative_encoding = relative_encoding
|
129 |
+
self.block_position_encoding = block_position_encoding
|
130 |
+
self.output_predict = output_predict
|
131 |
+
self.spell_length = spell_length
|
132 |
+
self.spell_func = spell_func
|
133 |
+
self.attention_scale = attention_scale
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.pool_token = pool_token
|
136 |
+
self.classifier_dropout = classifier_dropout
|
137 |
+
|
138 |
+
super().__init__(**kwargs)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_glm.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 shunxing1234 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GLM model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch.nn import init, LayerNorm, Linear, CrossEntropyLoss
|
23 |
+
|
24 |
+
from transformers.activations import gelu
|
25 |
+
from transformers.utils import (
|
26 |
+
add_code_sample_docstrings,
|
27 |
+
add_start_docstrings,
|
28 |
+
add_start_docstrings_to_model_forward,
|
29 |
+
)
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
ModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
)
|
35 |
+
|
36 |
+
from transformers.modeling_utils import (
|
37 |
+
PreTrainedModel,
|
38 |
+
)
|
39 |
+
from .configuration_glm import GLMConfig
|
40 |
+
from torch.nn.parameter import Parameter
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "shunxing1234/GLM"
|
43 |
+
_CONFIG_FOR_DOC = "GLMConfig"
|
44 |
+
_TOKENIZER_FOR_DOC = "GLMTokenizer"
|
45 |
+
|
46 |
+
GLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"shunxing1234/GLM",
|
48 |
+
# See all GLM models at https://huggingface.co/models?filter=glm
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
def unscaled_init_method(sigma):
|
53 |
+
"""Init method based on N(0, sigma)."""
|
54 |
+
|
55 |
+
def init_(tensor):
|
56 |
+
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
|
57 |
+
|
58 |
+
return init_
|
59 |
+
|
60 |
+
|
61 |
+
def scaled_init_method(mean, std, num_layers):
|
62 |
+
"""Init method based on N(0, sigma/sqrt(2*num_layers)."""
|
63 |
+
std = std / math.sqrt(2.0 * num_layers)
|
64 |
+
|
65 |
+
def init_(tensor):
|
66 |
+
return torch.nn.init.normal_(tensor, mean=mean, std=std)
|
67 |
+
|
68 |
+
return init_
|
69 |
+
|
70 |
+
|
71 |
+
def ensure_divisibility(numerator, denominator):
|
72 |
+
"""Ensure that numerator is divisible by the denominator."""
|
73 |
+
assert numerator % denominator == 0, '{} is not divisible by {}'.format(
|
74 |
+
numerator, denominator)
|
75 |
+
|
76 |
+
|
77 |
+
def divide(numerator, denominator):
|
78 |
+
"""Ensure that numerator is divisible by the denominator and return
|
79 |
+
the division value."""
|
80 |
+
ensure_divisibility(numerator, denominator)
|
81 |
+
return numerator // denominator
|
82 |
+
|
83 |
+
|
84 |
+
def split_tensor_along_last_dim(tensor, num_partitions,
|
85 |
+
contiguous_split_chunks=False):
|
86 |
+
"""Split a tensor along its last dimension.
|
87 |
+
Arguments:
|
88 |
+
tensor: input tensor.
|
89 |
+
num_partitions: number of partitions to split the tensor
|
90 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
91 |
+
in memory.
|
92 |
+
"""
|
93 |
+
# Get the size and dimension.
|
94 |
+
last_dim = tensor.dim() - 1
|
95 |
+
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
|
96 |
+
# Split.
|
97 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
98 |
+
# Note: torch.split does not create contiguous tensors by default.
|
99 |
+
if contiguous_split_chunks:
|
100 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
101 |
+
|
102 |
+
return tensor_list
|
103 |
+
|
104 |
+
|
105 |
+
class MLP(torch.nn.Module):
|
106 |
+
"""MLP for GPT2.
|
107 |
+
|
108 |
+
MLP will take the input with h hidden state, project it to 4*h
|
109 |
+
hidden dimension, perform gelu transformation, and project the
|
110 |
+
state back into h hidden dimension. At the end, dropout is also
|
111 |
+
applied.
|
112 |
+
|
113 |
+
Arguments:
|
114 |
+
hidden_size: The hidden size of the self attention.
|
115 |
+
output_dropout_prob: dropout probability for the outputs
|
116 |
+
after self attention and final output.
|
117 |
+
init_method: initialization method used for the weights. Note
|
118 |
+
that all biases are initialized to zero and
|
119 |
+
layernorm weight are initialized to one.
|
120 |
+
output_layer_init_method: output layer initialization. If None,
|
121 |
+
use `init_method`.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, hidden_size, output_dropout_prob, init_method,
|
125 |
+
output_layer_init_method=None):
|
126 |
+
super(MLP, self).__init__()
|
127 |
+
# Set output layer initialization if not provided.
|
128 |
+
if output_layer_init_method is None:
|
129 |
+
output_layer_init_method = init_method
|
130 |
+
# Project to 4h.
|
131 |
+
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size)
|
132 |
+
|
133 |
+
# Project back to h.
|
134 |
+
self.dense_4h_to_h = Linear(
|
135 |
+
4 * hidden_size,
|
136 |
+
hidden_size)
|
137 |
+
|
138 |
+
self.dropout = torch.nn.Dropout(output_dropout_prob)
|
139 |
+
|
140 |
+
def forward(self, hidden_states):
|
141 |
+
# [b, s, 4hp]
|
142 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
143 |
+
intermediate_parallel = gelu(intermediate_parallel)
|
144 |
+
|
145 |
+
# [b, s, h]
|
146 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
147 |
+
output = self.dropout(output)
|
148 |
+
return output
|
149 |
+
|
150 |
+
|
151 |
+
class VocabEmbedding(torch.nn.Module):
|
152 |
+
"""Embedding parallelized in the vocabulary dimension.
|
153 |
+
|
154 |
+
This is mainly adapted from torch.nn.Embedding and all the default
|
155 |
+
values are kept.
|
156 |
+
Arguments:
|
157 |
+
num_embeddings: vocabulary size.
|
158 |
+
embedding_dim: size of hidden state.
|
159 |
+
init_method: method to initialize weights.
|
160 |
+
"""
|
161 |
+
|
162 |
+
def __init__(self, config):
|
163 |
+
super(VocabEmbedding, self).__init__()
|
164 |
+
# Keep the input dimensions.
|
165 |
+
self.num_embeddings = config.vocab_size
|
166 |
+
self.embedding_dim = config.hidden_size
|
167 |
+
# Set the detauls for compatibility.
|
168 |
+
self.padding_idx = None
|
169 |
+
self.max_norm = None
|
170 |
+
self.norm_type = 2.
|
171 |
+
self.scale_grad_by_freq = False
|
172 |
+
self.sparse = False
|
173 |
+
self._weight = None
|
174 |
+
|
175 |
+
self.vocab_start_index = 0
|
176 |
+
self.vocab_end_index = self.num_embeddings
|
177 |
+
|
178 |
+
# Allocate weights.
|
179 |
+
self.weight = Parameter(torch.Tensor(self.num_embeddings,
|
180 |
+
self.embedding_dim))
|
181 |
+
# And initialize.
|
182 |
+
init.xavier_normal_(self.weight)
|
183 |
+
|
184 |
+
def forward(self, input_):
|
185 |
+
# Get the embeddings.
|
186 |
+
output = F.embedding(input_, self.weight,
|
187 |
+
self.padding_idx, self.max_norm,
|
188 |
+
self.norm_type, self.scale_grad_by_freq,
|
189 |
+
self.sparse)
|
190 |
+
return output
|
191 |
+
|
192 |
+
|
193 |
+
class PositionalEmbedding(torch.nn.Module):
|
194 |
+
|
195 |
+
def __init__(self, hidden_size):
|
196 |
+
super(PositionalEmbedding, self).__init__()
|
197 |
+
|
198 |
+
self.hidden_size = hidden_size
|
199 |
+
|
200 |
+
inv_freq = 1 / (10000 ** (torch.arange(0.0, hidden_size, 2.0) / hidden_size))
|
201 |
+
self.register_buffer('inv_freq', inv_freq)
|
202 |
+
|
203 |
+
def forward(self, pos_seq, bsz=None):
|
204 |
+
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
|
205 |
+
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
206 |
+
|
207 |
+
if bsz is not None:
|
208 |
+
return pos_emb[None, :, :].expand(bsz, -1, -1)
|
209 |
+
else:
|
210 |
+
return pos_emb[None, :, :]
|
211 |
+
|
212 |
+
|
213 |
+
class SelfAttention(torch.nn.Module):
|
214 |
+
"""self-attention layer for GLM.
|
215 |
+
|
216 |
+
Self-attention layer takes input with size [b, s, h] where b is
|
217 |
+
the batch size, s is the sequence lenght, and h is the hidden size
|
218 |
+
and creates output of the same size.
|
219 |
+
Arguments:
|
220 |
+
hidden_size: total hidden size of the layer (h).
|
221 |
+
num_attention_heads: number of attention heads (n). Note that we
|
222 |
+
require n to be divisible by number of GPUs
|
223 |
+
used to parallelize the model. Also, we
|
224 |
+
require hidden size to be divisible by n.
|
225 |
+
attention_dropout_prob: dropout probability for the attention scores.
|
226 |
+
init_method: weight initialization.
|
227 |
+
output_layer_init_method: output layer initialization. If None, use
|
228 |
+
`init_method`.
|
229 |
+
We use the following notation:
|
230 |
+
h: hidden_size
|
231 |
+
n: num_attention_heads
|
232 |
+
p: number of partitions
|
233 |
+
np: n/p
|
234 |
+
hp: h/p
|
235 |
+
hn: h/n
|
236 |
+
b: batch size
|
237 |
+
s: sequence length
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(self, hidden_size, num_attention_heads,
|
241 |
+
attention_dropout_prob, output_dropout_prob,
|
242 |
+
init_method, output_layer_init_method=None,
|
243 |
+
attention_scale=1.0):
|
244 |
+
super(SelfAttention, self).__init__()
|
245 |
+
# Set output layer initialization if not provided.
|
246 |
+
if output_layer_init_method is None:
|
247 |
+
output_layer_init_method = init_method
|
248 |
+
# Per attention head and per partition values.
|
249 |
+
self.hidden_size = hidden_size
|
250 |
+
self.hidden_size_per_attention_head = divide(hidden_size,
|
251 |
+
num_attention_heads)
|
252 |
+
|
253 |
+
self.num_attention_heads = num_attention_heads
|
254 |
+
self.attention_scale = attention_scale
|
255 |
+
# Strided linear layer.
|
256 |
+
self.query_key_value = Linear(hidden_size, 3 * hidden_size)
|
257 |
+
|
258 |
+
# Dropout. Note that for a single iteration, this layer will generate
|
259 |
+
# different outputs on different number of parallel partitions but
|
260 |
+
# on average it should not be partition dependent.
|
261 |
+
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
|
262 |
+
|
263 |
+
# Output.
|
264 |
+
self.dense = Linear(hidden_size,
|
265 |
+
hidden_size)
|
266 |
+
self.output_dropout = torch.nn.Dropout(output_dropout_prob)
|
267 |
+
|
268 |
+
def _transpose_for_scores(self, tensor):
|
269 |
+
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
|
270 |
+
size [b, np, s, hn].
|
271 |
+
"""
|
272 |
+
new_tensor_shape = tensor.size()[:-1] + \
|
273 |
+
(self.num_attention_heads,
|
274 |
+
self.hidden_size_per_attention_head)
|
275 |
+
tensor = tensor.view(*new_tensor_shape)
|
276 |
+
return tensor.permute(0, 2, 1, 3)
|
277 |
+
|
278 |
+
def forward(self, hidden_states, ltor_mask, mem=None):
|
279 |
+
# hidden_states: [b, s, h]
|
280 |
+
# ltor_mask: [b,1,s,s]
|
281 |
+
|
282 |
+
# Attention heads. [b, s, hp]
|
283 |
+
query_length = hidden_states.size(1)
|
284 |
+
# self attention
|
285 |
+
if mem is None:
|
286 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
287 |
+
(mixed_query_layer,
|
288 |
+
mixed_key_layer,
|
289 |
+
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
290 |
+
else:
|
291 |
+
cat = torch.cat((mem, hidden_states), 1)
|
292 |
+
mixed_x_layer = self.query_key_value(cat)
|
293 |
+
(mixed_query_layer,
|
294 |
+
mixed_key_layer,
|
295 |
+
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
296 |
+
mixed_query_layer = mixed_query_layer[:, -query_length:]
|
297 |
+
|
298 |
+
# Reshape and transpose [b, np, s, hn]
|
299 |
+
query_layer = self._transpose_for_scores(mixed_query_layer)
|
300 |
+
key_layer = self._transpose_for_scores(mixed_key_layer)
|
301 |
+
value_layer = self._transpose_for_scores(mixed_value_layer)
|
302 |
+
|
303 |
+
if self.attention_scale > 1.0:
|
304 |
+
# Raw attention scores. [b, np, s, s]
|
305 |
+
attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_scale),
|
306 |
+
key_layer.transpose(-1, -2) / math.sqrt(
|
307 |
+
self.hidden_size_per_attention_head * self.attention_scale))
|
308 |
+
else:
|
309 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2) / math.sqrt(
|
310 |
+
self.hidden_size_per_attention_head))
|
311 |
+
|
312 |
+
# Apply the left to right attention mask.
|
313 |
+
ltor_mask = ltor_mask.type_as(attention_scores)
|
314 |
+
attention_scores = torch.mul(attention_scores, ltor_mask)
|
315 |
+
if self.attention_scale > 1.0:
|
316 |
+
max_attention_scores = attention_scores.max(dim=-1, keepdim=True)[0]
|
317 |
+
attention_scores -= max_attention_scores
|
318 |
+
attention_scores *= self.attention_scale
|
319 |
+
|
320 |
+
attention_scores = attention_scores + (-65504.0) * (1.0 - ltor_mask)
|
321 |
+
# Attention probabilities. [b, np, s, s]
|
322 |
+
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
|
323 |
+
# This is actually dropping out entire tokens to attend to, which might
|
324 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
325 |
+
# with get_cuda_rng_tracker().fork():
|
326 |
+
attention_probs = self.attention_dropout(attention_probs)
|
327 |
+
|
328 |
+
# Context layer.
|
329 |
+
# [b, np, s, hn]
|
330 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
331 |
+
# [b, s, np, hn]
|
332 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
333 |
+
new_context_layer_shape = context_layer.size()[:-2] + \
|
334 |
+
(self.hidden_size,)
|
335 |
+
# [b, s, hp]
|
336 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
337 |
+
|
338 |
+
# Output. [b, s, h]
|
339 |
+
output = self.dense(context_layer)
|
340 |
+
output = self.output_dropout(output)
|
341 |
+
|
342 |
+
return output
|
343 |
+
|
344 |
+
|
345 |
+
class GLMBlock(torch.nn.Module):
|
346 |
+
"""A single layer transformer for GLM.
|
347 |
+
|
348 |
+
We use the following notation:
|
349 |
+
h: hidden size
|
350 |
+
n: number of attention heads
|
351 |
+
b: batch size
|
352 |
+
s: sequence length
|
353 |
+
Transformore layer takes input with size [b, s, h] and returns an
|
354 |
+
output of the same size.
|
355 |
+
|
356 |
+
Arguments:
|
357 |
+
hidden_size: The hidden size of the self attention.
|
358 |
+
num_attention_heads: number of attention head in the self
|
359 |
+
attention.
|
360 |
+
attention_dropout_prob: dropout probability of the attention
|
361 |
+
score in self attention.
|
362 |
+
output_dropout_prob: dropout probability for the outputs
|
363 |
+
after self attention and final output.
|
364 |
+
layernorm_epsilon: epsilon used in layernorm to avoid
|
365 |
+
division by zero.
|
366 |
+
init_method: initialization method used for the weights. Note
|
367 |
+
that all biases are initialized to zero and
|
368 |
+
layernorm weight are initialized to one.
|
369 |
+
output_layer_init_method: output layers (attention output and
|
370 |
+
mlp output) initialization. If None,
|
371 |
+
use `init_method`.
|
372 |
+
"""
|
373 |
+
|
374 |
+
def __init__(self,
|
375 |
+
hidden_size,
|
376 |
+
num_attention_heads,
|
377 |
+
attention_dropout_prob,
|
378 |
+
output_dropout_prob,
|
379 |
+
layernorm_epsilon,
|
380 |
+
init_method,
|
381 |
+
output_layer_init_method=None,
|
382 |
+
attention_scale=1.0):
|
383 |
+
super(GLMBlock, self).__init__()
|
384 |
+
# Set output layer initialization if not provided.
|
385 |
+
if output_layer_init_method is None:
|
386 |
+
output_layer_init_method = init_method
|
387 |
+
|
388 |
+
# Layernorm on the input data.
|
389 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
|
390 |
+
|
391 |
+
# Self attention.
|
392 |
+
self.attention = SelfAttention(
|
393 |
+
hidden_size,
|
394 |
+
num_attention_heads,
|
395 |
+
attention_dropout_prob,
|
396 |
+
output_dropout_prob,
|
397 |
+
init_method,
|
398 |
+
output_layer_init_method=output_layer_init_method,
|
399 |
+
attention_scale=attention_scale)
|
400 |
+
|
401 |
+
# Layernorm on the input data.
|
402 |
+
self.post_attention_layernorm = LayerNorm(hidden_size,
|
403 |
+
eps=layernorm_epsilon)
|
404 |
+
|
405 |
+
# MLP
|
406 |
+
self.mlp = MLP(
|
407 |
+
hidden_size,
|
408 |
+
output_dropout_prob,
|
409 |
+
init_method,
|
410 |
+
output_layer_init_method=output_layer_init_method)
|
411 |
+
|
412 |
+
def forward(self, hidden_states, ltor_mask, mem=None):
|
413 |
+
# hidden_states: [b, s, h]
|
414 |
+
# ltor_mask: [b,1, s,s]
|
415 |
+
|
416 |
+
# Layer norm at the begining of the transformer layer.
|
417 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
418 |
+
mem = self.input_layernorm(mem) if mem is not None else None
|
419 |
+
# Self attention.
|
420 |
+
attention_output = self.attention(layernorm_output, ltor_mask, mem)
|
421 |
+
# Residual connection.
|
422 |
+
layernorm_input = hidden_states + attention_output
|
423 |
+
# Layer norm post the self attention.
|
424 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
425 |
+
# MLP.
|
426 |
+
mlp_output = self.mlp(layernorm_output)
|
427 |
+
# Second residual connection.
|
428 |
+
output = layernorm_input + mlp_output
|
429 |
+
|
430 |
+
return output
|
431 |
+
|
432 |
+
|
433 |
+
class GLMStack(torch.nn.Module):
|
434 |
+
"""GLM transformer.
|
435 |
+
|
436 |
+
This module takes input from embedding layer and it's output can
|
437 |
+
be used directly by a logit layer. It consists of L (num-layers)
|
438 |
+
blocks of:
|
439 |
+
layer norm
|
440 |
+
self attention
|
441 |
+
residual connection
|
442 |
+
layer norm
|
443 |
+
mlp
|
444 |
+
residual connection
|
445 |
+
followed by a final layer norm.
|
446 |
+
|
447 |
+
Arguments:
|
448 |
+
num_layers: Number of transformer layers.
|
449 |
+
hidden_size: The hidden size of the self attention.
|
450 |
+
num_attention_heads: number of attention head in the self
|
451 |
+
attention.
|
452 |
+
attention_dropout_prob: dropout probability of the attention
|
453 |
+
score in self attention.
|
454 |
+
output_dropout_prob: dropout probability for the outputs
|
455 |
+
after self attention and final output.
|
456 |
+
checkpoint_activations: if True, checkpoint activations.
|
457 |
+
checkpoint_num_layers: number of layers to checkpoint. This
|
458 |
+
is basically the chunk size in checkpoitning.
|
459 |
+
layernorm_epsilon: epsilon used in layernorm to avoid
|
460 |
+
division by zero.
|
461 |
+
init_method_std: standard deviation of the init method which has
|
462 |
+
the form N(0, std).
|
463 |
+
use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
|
464 |
+
scaling for the output weights (
|
465 |
+
output of self attention and mlp).
|
466 |
+
"""
|
467 |
+
|
468 |
+
def __init__(self,
|
469 |
+
num_layers,
|
470 |
+
hidden_size,
|
471 |
+
num_attention_heads,
|
472 |
+
max_sequence_length,
|
473 |
+
embedding_dropout_prob,
|
474 |
+
attention_dropout_prob,
|
475 |
+
output_dropout_prob,
|
476 |
+
checkpoint_activations,
|
477 |
+
checkpoint_num_layers=1,
|
478 |
+
layernorm_epsilon=1.0e-5,
|
479 |
+
init_method_std=0.02,
|
480 |
+
use_scaled_init_for_output_weights=True,
|
481 |
+
block_position_encoding=False,
|
482 |
+
attention_scale=1.0,
|
483 |
+
):
|
484 |
+
super(GLMStack, self).__init__()
|
485 |
+
self.hidden_size = hidden_size
|
486 |
+
# Store activation checkpoiting flag.
|
487 |
+
self.checkpoint_activations = checkpoint_activations
|
488 |
+
self.checkpoint_num_layers = checkpoint_num_layers
|
489 |
+
|
490 |
+
output_layer_init_method = None
|
491 |
+
if use_scaled_init_for_output_weights:
|
492 |
+
output_layer_init_method = scaled_init_method(0.0, init_method_std,
|
493 |
+
num_layers)
|
494 |
+
# Embeddings dropout
|
495 |
+
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
496 |
+
self.block_position_encoding = block_position_encoding
|
497 |
+
|
498 |
+
# Position embedding (serial).
|
499 |
+
if block_position_encoding:
|
500 |
+
self.position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
|
501 |
+
self.block_position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
|
502 |
+
torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
|
503 |
+
else:
|
504 |
+
self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
|
505 |
+
# Initialize the position embeddings.
|
506 |
+
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
507 |
+
|
508 |
+
def get_layer():
|
509 |
+
|
510 |
+
return GLMBlock(
|
511 |
+
hidden_size,
|
512 |
+
num_attention_heads,
|
513 |
+
attention_dropout_prob,
|
514 |
+
output_dropout_prob,
|
515 |
+
layernorm_epsilon,
|
516 |
+
unscaled_init_method(init_method_std),
|
517 |
+
output_layer_init_method=output_layer_init_method,
|
518 |
+
attention_scale=attention_scale)
|
519 |
+
|
520 |
+
# Transformer layers.
|
521 |
+
self.layers = torch.nn.ModuleList(
|
522 |
+
[get_layer() for _ in range(num_layers)])
|
523 |
+
|
524 |
+
# Final layer norm before output.
|
525 |
+
self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
|
526 |
+
|
527 |
+
def forward(self, hidden_states, position_ids, attention_mask, memory_states=None):
|
528 |
+
|
529 |
+
batch_size, query_length = hidden_states.size()[:2]
|
530 |
+
memory_length = memory_states[0].size(1) if memory_states else 0
|
531 |
+
# attention mask is the beginning postion of B region, \in [0, query_len)
|
532 |
+
is_scalar = torch.numel(attention_mask) == 1
|
533 |
+
is_sep = is_scalar or torch.numel(attention_mask) == batch_size
|
534 |
+
if is_sep:
|
535 |
+
sep = attention_mask.item() if is_scalar else attention_mask
|
536 |
+
|
537 |
+
# conventional transformer
|
538 |
+
def build_mask_matrix(seq_length, sep, memory_length=0):
|
539 |
+
m = hidden_states.new_ones((1, seq_length, seq_length))
|
540 |
+
m = torch.tril(m)
|
541 |
+
if is_scalar:
|
542 |
+
m[0, :, :int(sep)] = 1
|
543 |
+
else:
|
544 |
+
m = m.expand(batch_size, -1, -1)
|
545 |
+
ids = torch.arange(seq_length, device=sep.device, dtype=sep.dtype).view(1, -1)
|
546 |
+
mask = ids < sep.view(-1, 1)
|
547 |
+
m = m.masked_fill(mask.unsqueeze(1).expand_as(m), 1)
|
548 |
+
if memory_length > 0:
|
549 |
+
m = m.expand(batch_size, -1, -1)
|
550 |
+
m = torch.cat((hidden_states.new_ones((batch_size, seq_length, memory_length)), m), dim=2)
|
551 |
+
m = m.unsqueeze(1)
|
552 |
+
return m
|
553 |
+
|
554 |
+
attention_mask = build_mask_matrix(query_length, sep, memory_length=memory_length)
|
555 |
+
else:
|
556 |
+
if attention_mask.dim() == 2:
|
557 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
|
558 |
+
attention_mask = attention_mask[:, :, :, -query_length - memory_length:]
|
559 |
+
|
560 |
+
if self.block_position_encoding:
|
561 |
+
position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
|
562 |
+
position_embeddings = self.position_embeddings(position_ids)
|
563 |
+
|
564 |
+
hidden_states = hidden_states + position_embeddings
|
565 |
+
if self.block_position_encoding:
|
566 |
+
block_position_embeddings = self.block_position_embeddings(block_position_ids)
|
567 |
+
hidden_states = hidden_states + block_position_embeddings
|
568 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
569 |
+
|
570 |
+
def check_detach(_hidden_states):
|
571 |
+
return _hidden_states.detach()
|
572 |
+
|
573 |
+
mem_layers = [check_detach(hidden_states)]
|
574 |
+
|
575 |
+
for i, layer in enumerate(self.layers):
|
576 |
+
|
577 |
+
args = [hidden_states, attention_mask]
|
578 |
+
|
579 |
+
def create_custom_forward(module):
|
580 |
+
def custom_forward(*inputs):
|
581 |
+
# None for past_key_value
|
582 |
+
return module(*inputs)
|
583 |
+
|
584 |
+
return custom_forward
|
585 |
+
|
586 |
+
mem_i = memory_states[i] if memory_states else None
|
587 |
+
|
588 |
+
if self.checkpoint_activations:
|
589 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
590 |
+
create_custom_forward(layer),
|
591 |
+
hidden_states,
|
592 |
+
mem=mem_i,
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
hidden_states = layer(*args, mem=mem_i)
|
596 |
+
mem_layers.append(check_detach(hidden_states))
|
597 |
+
|
598 |
+
# Final layer norm.
|
599 |
+
output = self.final_layernorm(hidden_states)
|
600 |
+
mem_layers = self.update_mems(mem_layers, memory_states)
|
601 |
+
return (output, mem_layers)
|
602 |
+
|
603 |
+
def update_mems(self, hiddens, mems):
|
604 |
+
memory_length = mems[0].size(1) if mems else 0
|
605 |
+
query_length = hiddens[0].size(1)
|
606 |
+
new_memory_length = memory_length + query_length
|
607 |
+
|
608 |
+
new_mems = []
|
609 |
+
# with torch.no_grad():
|
610 |
+
for i in range(len(hiddens)):
|
611 |
+
if new_memory_length <= query_length:
|
612 |
+
new_mems.append(hiddens[i][:, -new_memory_length:])
|
613 |
+
else:
|
614 |
+
new_mems.append(torch.cat((mems[i][:, -new_memory_length + query_length:], hiddens[i]), dim=1))
|
615 |
+
return new_mems
|
616 |
+
|
617 |
+
|
618 |
+
class GLMPreTrainedModel(PreTrainedModel):
|
619 |
+
"""
|
620 |
+
An abstract class to handle weights initialization and
|
621 |
+
a simple interface for downloading and loading pretrained models.
|
622 |
+
"""
|
623 |
+
|
624 |
+
config_class = GLMConfig
|
625 |
+
base_model_prefix = "glm"
|
626 |
+
supports_gradient_checkpointing = True
|
627 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
628 |
+
|
629 |
+
def _init_weights(self, module):
|
630 |
+
""" Initialize the weights """
|
631 |
+
if isinstance(module, torch.nn.Linear):
|
632 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
633 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
634 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
635 |
+
if module.bias is not None:
|
636 |
+
module.bias.data.zero_()
|
637 |
+
elif isinstance(module, torch.nn.Embedding):
|
638 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
639 |
+
if module.padding_idx is not None:
|
640 |
+
module.weight.data[module.padding_idx].zero_()
|
641 |
+
elif isinstance(module, torch.nn.LayerNorm):
|
642 |
+
module.bias.data.zero_()
|
643 |
+
module.weight.data.fill_(1.0)
|
644 |
+
|
645 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
646 |
+
if isinstance(module, GLMModel):
|
647 |
+
module.gradient_checkpointing = value
|
648 |
+
|
649 |
+
|
650 |
+
GLM_START_DOCSTRING = r"""
|
651 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
652 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
653 |
+
usage and behavior.
|
654 |
+
|
655 |
+
Parameters:
|
656 |
+
config ([`~GLMConfig`]): Model configuration class with all the parameters of the model.
|
657 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
658 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
659 |
+
"""
|
660 |
+
|
661 |
+
GLM_INPUTS_DOCSTRING = r"""
|
662 |
+
Args:
|
663 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
664 |
+
Indices of input sequence tokens in the vocabulary.
|
665 |
+
|
666 |
+
Indices can be obtained using [`GLMTokenizer`].
|
667 |
+
See [`PreTrainedTokenizer.encode`] and
|
668 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
669 |
+
|
670 |
+
[What are input IDs?](../glossary#input-ids)
|
671 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
672 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
673 |
+
|
674 |
+
- 1 for tokens that are **not masked**,
|
675 |
+
- 0 for tokens that are **masked**.
|
676 |
+
|
677 |
+
[What are attention masks?](../glossary#attention-mask)
|
678 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
679 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
680 |
+
|
681 |
+
- 0 corresponds to a *sentence A* token,
|
682 |
+
- 1 corresponds to a *sentence B* token.
|
683 |
+
|
684 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
685 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
686 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
687 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
688 |
+
|
689 |
+
[What are position IDs?](../glossary#position-ids)
|
690 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
691 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
692 |
+
|
693 |
+
- 1 indicates the head is **not masked**,
|
694 |
+
- 0 indicates the head is **masked**.
|
695 |
+
|
696 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
697 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
698 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
699 |
+
than the model's internal embedding lookup matrix.
|
700 |
+
output_attentions (`bool`, *optional*):
|
701 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
702 |
+
tensors for more detail.
|
703 |
+
output_hidden_states (`bool`, *optional*):
|
704 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
705 |
+
more detail.
|
706 |
+
return_dict (`bool`, *optional*):
|
707 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
708 |
+
"""
|
709 |
+
|
710 |
+
|
711 |
+
@add_start_docstrings(
|
712 |
+
"The bare GLM Model transformer outputting raw hidden-states without any specific head on top.",
|
713 |
+
GLM_START_DOCSTRING,
|
714 |
+
)
|
715 |
+
class GLMModel(GLMPreTrainedModel):
|
716 |
+
"""
|
717 |
+
|
718 |
+
The model can behave as an encoder (with only self-attention) as well
|
719 |
+
as a decoder, in which case a layer of cross-attention is added between
|
720 |
+
the self-attention layers, following the architecture described in [Attention is
|
721 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
722 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
723 |
+
|
724 |
+
To behave as an decoder the model needs to be initialized with the
|
725 |
+
`is_decoder` argument of the configuration set to `True`.
|
726 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
727 |
+
argument and `add_cross_attention` set to `True`; an
|
728 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
729 |
+
"""
|
730 |
+
|
731 |
+
def __init__(self, config):
|
732 |
+
super().__init__(config)
|
733 |
+
self.config = config
|
734 |
+
self.output_predict = config.output_predict
|
735 |
+
# Word embeddings (parallel).
|
736 |
+
self.word_embeddings = VocabEmbedding(config)
|
737 |
+
|
738 |
+
# Transformer
|
739 |
+
self.transformer = GLMStack(config.num_layers,
|
740 |
+
config.hidden_size,
|
741 |
+
config.num_attention_heads,
|
742 |
+
config.max_sequence_length,
|
743 |
+
config.embedding_dropout_prob,
|
744 |
+
config.attention_dropout_prob,
|
745 |
+
config.output_dropout_prob,
|
746 |
+
config.checkpoint_activations,
|
747 |
+
config.checkpoint_num_layers,
|
748 |
+
attention_scale=config.attention_scale,
|
749 |
+
block_position_encoding=config.block_position_encoding)
|
750 |
+
|
751 |
+
# Initialize weights and apply final processing
|
752 |
+
self.post_init()
|
753 |
+
|
754 |
+
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
755 |
+
@add_code_sample_docstrings(
|
756 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
757 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
758 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
759 |
+
config_class=_CONFIG_FOR_DOC,
|
760 |
+
)
|
761 |
+
def forward(
|
762 |
+
self,
|
763 |
+
input_ids=None,
|
764 |
+
position_ids=None,
|
765 |
+
attention_mask=None,
|
766 |
+
mems=None,
|
767 |
+
**kwargs
|
768 |
+
):
|
769 |
+
batch_size = input_ids.size(0)
|
770 |
+
words_embeddings = self.word_embeddings(input_ids)
|
771 |
+
embeddings = words_embeddings
|
772 |
+
|
773 |
+
device = input_ids.device
|
774 |
+
input_shape = input_ids.size()
|
775 |
+
|
776 |
+
if position_ids is None:
|
777 |
+
position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device)
|
778 |
+
block_position_ids = torch.zeros(input_shape[-1], dtype=torch.long, device=device)
|
779 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0).unsqueeze(0)
|
780 |
+
if attention_mask is None:
|
781 |
+
attention_mask = torch.zeros(batch_size)
|
782 |
+
# Transformer.
|
783 |
+
transformer_output = self.transformer(embeddings, position_ids, attention_mask, mems)
|
784 |
+
last_hidden_states, mems = transformer_output
|
785 |
+
logits = None
|
786 |
+
if self.output_predict:
|
787 |
+
logits = F.linear(last_hidden_states, self.word_embeddings.weight)
|
788 |
+
|
789 |
+
return ModelOutput(
|
790 |
+
last_hidden_states=last_hidden_states,
|
791 |
+
logits=logits,
|
792 |
+
mems=mems,
|
793 |
+
)
|
794 |
+
|
795 |
+
|
796 |
+
@add_start_docstrings(
|
797 |
+
"""GLM Model transformer for multiple choice classification""",
|
798 |
+
GLM_START_DOCSTRING
|
799 |
+
)
|
800 |
+
class GLMForMultipleChoice(GLMPreTrainedModel):
|
801 |
+
def __init__(self, config):
|
802 |
+
super().__init__(config)
|
803 |
+
self.glm = GLMModel(config)
|
804 |
+
self.post_init()
|
805 |
+
|
806 |
+
def forward(
|
807 |
+
self,
|
808 |
+
input_ids=None,
|
809 |
+
position_ids=None,
|
810 |
+
attention_mask=None,
|
811 |
+
choice_ids=None,
|
812 |
+
choice_indices=None,
|
813 |
+
labels=None,
|
814 |
+
mems=None,
|
815 |
+
**kwargs
|
816 |
+
):
|
817 |
+
model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
|
818 |
+
lm_logits = model_output.logits
|
819 |
+
log_probs = []
|
820 |
+
for output, choices, choice_index in zip(F.log_softmax(lm_logits, dim=-1), choice_ids, choice_indices):
|
821 |
+
log_probs_single = []
|
822 |
+
for choice, choice_target_id in zip(choices, choice_index):
|
823 |
+
tmp = output[choice_target_id, choice]
|
824 |
+
log_probs_single.append(tmp.sum())
|
825 |
+
log_probs.append(torch.stack(log_probs_single))
|
826 |
+
log_probs = torch.stack(log_probs)
|
827 |
+
loss = None
|
828 |
+
if labels is not None:
|
829 |
+
loss_fct = CrossEntropyLoss()
|
830 |
+
loss = loss_fct(log_probs, labels)
|
831 |
+
return ModelOutput(
|
832 |
+
loss=loss,
|
833 |
+
logits=log_probs,
|
834 |
+
lm_logits=lm_logits,
|
835 |
+
mems=model_output.mems
|
836 |
+
)
|
837 |
+
|
838 |
+
@add_start_docstrings(
|
839 |
+
"""GLM Model transformer with a `language modeling` head on top""",
|
840 |
+
GLM_START_DOCSTRING,
|
841 |
+
)
|
842 |
+
class GLMForConditionalGeneration(GLMPreTrainedModel):
|
843 |
+
def __init__(self, config):
|
844 |
+
super().__init__(config)
|
845 |
+
self.glm = GLMModel(config)
|
846 |
+
self.post_init()
|
847 |
+
|
848 |
+
def _reorder_cache(self, past, beam_idx):
|
849 |
+
# if decoder past is not included in output
|
850 |
+
# speedy decoding is disabled and no need to reorder
|
851 |
+
if past is None:
|
852 |
+
return past
|
853 |
+
reordered_decoder_past = ()
|
854 |
+
for layer_past_states in past:
|
855 |
+
# get the correct batch idx from layer past batch dim
|
856 |
+
reordered_decoder_past = reordered_decoder_past + (
|
857 |
+
layer_past_states.index_select(0, beam_idx.to(layer_past_states.device)),)
|
858 |
+
return reordered_decoder_past
|
859 |
+
|
860 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, position_ids=None, generation_attention_mask=None,
|
861 |
+
**kwargs):
|
862 |
+
# only last token for inputs_ids if past is defined in kwargs
|
863 |
+
attention_mask = generation_attention_mask
|
864 |
+
seq_length = input_ids.shape[1]
|
865 |
+
if past:
|
866 |
+
if position_ids is not None:
|
867 |
+
position_ids = position_ids[:, :, seq_length - 1].unsqueeze(-1)
|
868 |
+
if attention_mask is not None:
|
869 |
+
attention_mask = attention_mask[:, :, seq_length - 1, :seq_length].unsqueeze(-2)
|
870 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
871 |
+
else:
|
872 |
+
if position_ids is not None:
|
873 |
+
position_ids = position_ids[:, :, :seq_length]
|
874 |
+
if attention_mask is not None:
|
875 |
+
attention_mask = attention_mask[:, :, :seq_length, :seq_length]
|
876 |
+
if position_ids is not None and input_ids.size(0) > position_ids.size(0):
|
877 |
+
batch_size = position_ids.size(0)
|
878 |
+
num_beams = input_ids.size(0) // batch_size
|
879 |
+
position_ids = position_ids.unsqueeze(1).expand(-1, num_beams, -1, -1)
|
880 |
+
position_ids = position_ids.reshape(batch_size * num_beams, *position_ids.shape[-2:])
|
881 |
+
if attention_mask is not None and input_ids.size(0) > attention_mask.size(0):
|
882 |
+
batch_size = attention_mask.size(0)
|
883 |
+
num_beams = input_ids.size(0) // batch_size
|
884 |
+
attention_mask = attention_mask.unsqueeze(1).expand(-1, num_beams, -1, -1, -1)
|
885 |
+
attention_mask = attention_mask.reshape(batch_size * num_beams, *attention_mask.shape[-3:])
|
886 |
+
return {
|
887 |
+
"input_ids": input_ids,
|
888 |
+
"position_ids": position_ids,
|
889 |
+
"attention_mask": attention_mask,
|
890 |
+
"mems": past,
|
891 |
+
}
|
892 |
+
|
893 |
+
def forward(
|
894 |
+
self,
|
895 |
+
input_ids=None,
|
896 |
+
position_ids=None,
|
897 |
+
attention_mask=None,
|
898 |
+
labels=None,
|
899 |
+
mems=None,
|
900 |
+
**kwargs
|
901 |
+
):
|
902 |
+
model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
|
903 |
+
lm_logits = model_output.logits
|
904 |
+
loss = None
|
905 |
+
if labels is not None:
|
906 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
907 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
908 |
+
return ModelOutput(
|
909 |
+
loss=loss,
|
910 |
+
logits=lm_logits,
|
911 |
+
mems=model_output.mems
|
912 |
+
)
|
913 |
+
|
914 |
+
|
915 |
+
@add_start_docstrings(
|
916 |
+
"""GLM Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
917 |
+
the pooled output) e.g. for GLUE tasks. """,
|
918 |
+
GLM_START_DOCSTRING,
|
919 |
+
)
|
920 |
+
class GLMForSequenceClassification(GLMPreTrainedModel):
|
921 |
+
def __init__(self, config: GLMConfig, hidden_dropout=None, num_class=1):
|
922 |
+
super().__init__(config)
|
923 |
+
self.pool_token = config.pool_token
|
924 |
+
self.glm = GLMModel(config)
|
925 |
+
self.glm.output_predict = False
|
926 |
+
self.num_class = num_class
|
927 |
+
# Multi-choice head.
|
928 |
+
self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
929 |
+
classifier_dropout = (
|
930 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.output_dropout_prob
|
931 |
+
)
|
932 |
+
self.dropout = torch.nn.Dropout(classifier_dropout)
|
933 |
+
self.out_proj = torch.nn.Linear(config.hidden_size, config.num_labels)
|
934 |
+
|
935 |
+
# Initialize weights and apply final processing
|
936 |
+
self.post_init()
|
937 |
+
|
938 |
+
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
939 |
+
@add_code_sample_docstrings(
|
940 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
941 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
942 |
+
output_type=SequenceClassifierOutput,
|
943 |
+
config_class=_CONFIG_FOR_DOC,
|
944 |
+
)
|
945 |
+
def forward(self,
|
946 |
+
input_ids=None,
|
947 |
+
position_ids=None,
|
948 |
+
attention_mask=None,
|
949 |
+
labels=None):
|
950 |
+
|
951 |
+
num_choices = None
|
952 |
+
|
953 |
+
if len(input_ids.shape) == 3:
|
954 |
+
batch_size, num_choices = input_ids.shape[:2]
|
955 |
+
input_ids = input_ids.reshape(-1, input_ids.size(-1))
|
956 |
+
attention_mask = attention_mask.reshape(-1, *attention_mask.size()[2:])
|
957 |
+
position_ids = position_ids.reshape(-1, *position_ids.size()[2:])
|
958 |
+
model_out = self.glm(input_ids, position_ids, attention_mask)
|
959 |
+
outputs, mems = model_out.last_hidden_states, model_out.mems
|
960 |
+
|
961 |
+
output = outputs[:, 0, :]
|
962 |
+
output = self.dropout(output)
|
963 |
+
output = torch.tanh(self.dense(output))
|
964 |
+
output = self.dropout(output)
|
965 |
+
logits = self.out_proj(output)
|
966 |
+
if num_choices is not None:
|
967 |
+
logits = logits.view(-1, num_choices)
|
968 |
+
loss = None
|
969 |
+
if labels is not None:
|
970 |
+
loss_fct = CrossEntropyLoss()
|
971 |
+
loss = loss_fct(logits, labels)
|
972 |
+
# loss = F.cross_entropy(logits.contiguous().float(), labels.long())
|
973 |
+
return SequenceClassifierOutput(loss=loss,
|
974 |
+
logits=logits,
|
975 |
+
hidden_states=outputs)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc6d01e84acccd8a5769d5a62fab8c1dbcfc361317b26a1c35546a731d32c9a
|
3 |
+
size 3840301119
|
tokenization_glm.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional, Tuple, List, Union
|
3 |
+
from shutil import copyfile
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer
|
7 |
+
from transformers.utils import logging
|
8 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
9 |
+
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
10 |
+
from transformers.utils.generic import _is_torch_device
|
11 |
+
import sentencepiece as spm
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class GLMBatchEncoding(BatchEncoding):
|
17 |
+
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
|
18 |
+
"""
|
19 |
+
Send all values to device by calling `v.to(device)` (PyTorch only).
|
20 |
+
|
21 |
+
Args:
|
22 |
+
device (`str` or `torch.device`): The device to put the tensors on.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
[`BatchEncoding`]: The same instance after modification.
|
26 |
+
"""
|
27 |
+
|
28 |
+
# This check catches things like APEX blindly calling "to" on all inputs to a module
|
29 |
+
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
|
30 |
+
# into a HalfTensor
|
31 |
+
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
|
32 |
+
self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()}
|
33 |
+
else:
|
34 |
+
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
|
35 |
+
return self
|
36 |
+
|
37 |
+
|
38 |
+
class GLMTokenizerMixin:
|
39 |
+
@property
|
40 |
+
def sop_token(self) -> Optional[str]:
|
41 |
+
return "<|startofpiece|>"
|
42 |
+
|
43 |
+
@property
|
44 |
+
def sop_token_id(self) -> Optional[int]:
|
45 |
+
"""
|
46 |
+
`Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling.
|
47 |
+
"""
|
48 |
+
return self.convert_tokens_to_ids(self.sop_token)
|
49 |
+
|
50 |
+
@property
|
51 |
+
def eop_token(self) -> Optional[str]:
|
52 |
+
return "<|endofpiece|>"
|
53 |
+
|
54 |
+
@property
|
55 |
+
def eop_token_id(self) -> Optional[int]:
|
56 |
+
"""
|
57 |
+
`Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling.
|
58 |
+
"""
|
59 |
+
return self.convert_tokens_to_ids(self.eop_token)
|
60 |
+
|
61 |
+
@property
|
62 |
+
def gmask_token_id(self) -> int:
|
63 |
+
return self.convert_tokens_to_ids("[gMASK]")
|
64 |
+
|
65 |
+
@property
|
66 |
+
def smask_token_id(self) -> int:
|
67 |
+
return self.convert_tokens_to_ids("[sMASK]")
|
68 |
+
|
69 |
+
@property
|
70 |
+
def mask_token_ids(self):
|
71 |
+
return [self.mask_token_id, self.smask_token_id, self.gmask_token_id]
|
72 |
+
|
73 |
+
def _build_input_for_multiple_choice(self, context, choices):
|
74 |
+
context_id = context["input_ids"]
|
75 |
+
if torch.is_tensor(context_id):
|
76 |
+
context_id = context_id.tolist()
|
77 |
+
|
78 |
+
division = len(context_id)
|
79 |
+
mask_position = context_id.index(self.mask_token_id)
|
80 |
+
|
81 |
+
token = torch.tensor(context_id, dtype=torch.long)
|
82 |
+
attention_mask = [context["attention_mask"].expand(division, -1)]
|
83 |
+
position_id = torch.arange(division, dtype=torch.long)
|
84 |
+
block_position_id = torch.zeros(division, dtype=torch.long)
|
85 |
+
|
86 |
+
choice_ids, choice_indices = [], []
|
87 |
+
|
88 |
+
for choice_str in choices:
|
89 |
+
choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'],
|
90 |
+
dtype=torch.long)
|
91 |
+
choice_ids.append(choice)
|
92 |
+
choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long))
|
93 |
+
attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long)))
|
94 |
+
|
95 |
+
token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1]))
|
96 |
+
position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long)))
|
97 |
+
block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long)))
|
98 |
+
|
99 |
+
attention_mask = torch.block_diag(*attention_mask)
|
100 |
+
attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0)
|
101 |
+
|
102 |
+
return {
|
103 |
+
"input_ids": token,
|
104 |
+
"position_ids": torch.stack((position_id, block_position_id)),
|
105 |
+
"attention_mask": attention_mask,
|
106 |
+
"choice_ids": choice_ids,
|
107 |
+
"choice_indices": choice_indices
|
108 |
+
}
|
109 |
+
|
110 |
+
def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length):
|
111 |
+
pad_length = max_seq_length - len(tokens)
|
112 |
+
attention_mask = torch.nn.functional.pad(
|
113 |
+
attention_mask,
|
114 |
+
(0, pad_length, 0, pad_length),
|
115 |
+
mode="constant",
|
116 |
+
value=0,
|
117 |
+
)
|
118 |
+
tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long)))
|
119 |
+
position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1)
|
120 |
+
return tokens, position_ids, attention_mask
|
121 |
+
|
122 |
+
def _collate(self, samples):
|
123 |
+
TILE = 1
|
124 |
+
length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE
|
125 |
+
|
126 |
+
token_batch, position_id_batch, attention_mask_batch = [], [], []
|
127 |
+
choices_batch, choice_target_ids_batch = [], []
|
128 |
+
|
129 |
+
for sample in samples:
|
130 |
+
token, position_id, attention_mask = self._pad_batch(
|
131 |
+
sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad
|
132 |
+
)
|
133 |
+
token_batch.append(token)
|
134 |
+
position_id_batch.append(position_id)
|
135 |
+
attention_mask_batch.append(attention_mask)
|
136 |
+
choices_batch.append(sample["choice_ids"])
|
137 |
+
choice_target_ids_batch.append(sample["choice_indices"])
|
138 |
+
return {
|
139 |
+
"input_ids": torch.stack(token_batch),
|
140 |
+
"position_ids": torch.stack(position_id_batch),
|
141 |
+
"attention_mask": torch.stack(attention_mask_batch).unsqueeze(1),
|
142 |
+
"choice_ids": choices_batch,
|
143 |
+
"choice_indices": choice_target_ids_batch,
|
144 |
+
}
|
145 |
+
|
146 |
+
def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None):
|
147 |
+
samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))]
|
148 |
+
samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in
|
149 |
+
zip(samples, choices)]
|
150 |
+
inputs = self._collate(samples)
|
151 |
+
return GLMBatchEncoding(inputs)
|
152 |
+
|
153 |
+
def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False):
|
154 |
+
mask_ids = self.mask_token_ids
|
155 |
+
input_ids = model_input.input_ids
|
156 |
+
batch_size, seq_length = input_ids.shape[:2]
|
157 |
+
position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)]
|
158 |
+
position_ids, block_position_ids = [], []
|
159 |
+
labels = None
|
160 |
+
if targets is not None:
|
161 |
+
is_batched = isinstance(targets, (list, tuple))
|
162 |
+
targets = self(targets, add_special_tokens=False, padding=False).input_ids
|
163 |
+
if not is_batched:
|
164 |
+
targets = [targets]
|
165 |
+
assert len(targets) == len(input_ids)
|
166 |
+
targets = [(target + [self.eop_token_id])[:max_gen_length] for target in targets]
|
167 |
+
if not padding:
|
168 |
+
max_gen_length = max(map(len, targets))
|
169 |
+
targets = [[self.sop_token_id] + target for target in targets]
|
170 |
+
labels = [target[1:] for target in targets]
|
171 |
+
targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets]
|
172 |
+
labels = [label + [-100] * (max_gen_length - len(label)) for label in labels]
|
173 |
+
targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device)
|
174 |
+
labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device)
|
175 |
+
labels = torch.cat((input_ids.new_full((batch_size, seq_length), -100), labels), dim=1)
|
176 |
+
for i in range(batch_size):
|
177 |
+
mask_positions = []
|
178 |
+
for mask_id in mask_ids:
|
179 |
+
mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist()
|
180 |
+
if not mask_positions:
|
181 |
+
raise ValueError("Cannot find mask token in the input")
|
182 |
+
mask_positions.sort()
|
183 |
+
mask_pos = mask_positions[0]
|
184 |
+
position_ids.append(position_id + [mask_pos] * max_gen_length)
|
185 |
+
block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1)))
|
186 |
+
position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device)
|
187 |
+
block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device)
|
188 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
189 |
+
attention_mask = model_input.attention_mask
|
190 |
+
attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1)
|
191 |
+
generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)),
|
192 |
+
torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))],
|
193 |
+
dim=0).unsqueeze(0).expand(batch_size, -1, -1)
|
194 |
+
attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2)
|
195 |
+
attention_mask = attention_mask.unsqueeze(1)
|
196 |
+
if targets is None:
|
197 |
+
input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1)
|
198 |
+
else:
|
199 |
+
input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1)
|
200 |
+
batch = {"input_ids": input_ids, "position_ids": position_ids}
|
201 |
+
if labels is None:
|
202 |
+
batch["generation_attention_mask"] = attention_mask
|
203 |
+
else:
|
204 |
+
batch["attention_mask"] = attention_mask
|
205 |
+
batch["labels"] = labels
|
206 |
+
return BatchEncoding(batch)
|
207 |
+
|
208 |
+
|
209 |
+
class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin):
|
210 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
211 |
+
truncation_side: str = "left"
|
212 |
+
|
213 |
+
@property
|
214 |
+
def gmask_token_id(self) -> int:
|
215 |
+
raise NotImplementedError("The model doesn't support gMASK")
|
216 |
+
|
217 |
+
@property
|
218 |
+
def smask_token_id(self) -> int:
|
219 |
+
raise NotImplementedError("The model doesn't support sMASK")
|
220 |
+
|
221 |
+
@property
|
222 |
+
def mask_token_ids(self):
|
223 |
+
return [self.mask_token_id]
|
224 |
+
|
225 |
+
|
226 |
+
class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin):
|
227 |
+
vocab_files_names = {"vocab_file": "cog-pretrain.model"}
|
228 |
+
truncation_side: str = "left"
|
229 |
+
|
230 |
+
def __init__(self, vocab_file, **kwargs):
|
231 |
+
super().__init__(**kwargs)
|
232 |
+
self.vocab_file = vocab_file
|
233 |
+
self.sp_model = spm.SentencePieceProcessor()
|
234 |
+
self.sp_model.Load(vocab_file)
|
235 |
+
|
236 |
+
@property
|
237 |
+
def vocab_size(self):
|
238 |
+
return len(self.sp_model)
|
239 |
+
|
240 |
+
def get_vocab(self):
|
241 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
242 |
+
vocab.update(self.added_tokens_encoder)
|
243 |
+
return vocab
|
244 |
+
|
245 |
+
def _tokenize(self, text, **kwargs):
|
246 |
+
return self.sp_model.encode(text, out_type=str)
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token):
|
249 |
+
"""Converts a token (str) in an id using the vocab."""
|
250 |
+
return self.sp_model.PieceToId(token)
|
251 |
+
|
252 |
+
def _convert_id_to_token(self, index):
|
253 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
254 |
+
return self.sp_model.IdToPiece(index)
|
255 |
+
|
256 |
+
def convert_tokens_to_string(self, tokens):
|
257 |
+
return self.sp_model.decode(tokens)
|
258 |
+
|
259 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
260 |
+
if not os.path.isdir(save_directory):
|
261 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
262 |
+
return
|
263 |
+
out_vocab_file = os.path.join(
|
264 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
265 |
+
)
|
266 |
+
|
267 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
268 |
+
copyfile(self.vocab_file, out_vocab_file)
|
269 |
+
elif not os.path.isfile(self.vocab_file):
|
270 |
+
with open(out_vocab_file, "wb") as fi:
|
271 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
272 |
+
fi.write(content_spiece_model)
|
273 |
+
|
274 |
+
return (out_vocab_file,)
|
275 |
+
|
276 |
+
def build_inputs_with_special_tokens(
|
277 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
278 |
+
) -> List[int]:
|
279 |
+
"""
|
280 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
281 |
+
adding special tokens. A BERT sequence has the following format:
|
282 |
+
|
283 |
+
- single sequence: ``[CLS] X [SEP]``
|
284 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
285 |
+
|
286 |
+
Args:
|
287 |
+
token_ids_0 (:obj:`List[int]`):
|
288 |
+
List of IDs to which the special tokens will be added.
|
289 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
290 |
+
Optional second list of IDs for sequence pairs.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
294 |
+
"""
|
295 |
+
assert token_ids_1 is None
|
296 |
+
cls = [self.cls_token_id]
|
297 |
+
eos = [self.eos_token_id]
|
298 |
+
return cls + token_ids_0 + eos
|
299 |
+
|
300 |
+
|
301 |
+
class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin):
|
302 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
303 |
+
truncation_side: str = "left"
|
304 |
+
|
305 |
+
def build_inputs_with_special_tokens(
|
306 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
307 |
+
) -> List[int]:
|
308 |
+
"""
|
309 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
310 |
+
adding special tokens. A BERT sequence has the following format:
|
311 |
+
|
312 |
+
- single sequence: ``[CLS] X [SEP]``
|
313 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
314 |
+
|
315 |
+
Args:
|
316 |
+
token_ids_0 (:obj:`List[int]`):
|
317 |
+
List of IDs to which the special tokens will be added.
|
318 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
319 |
+
Optional second list of IDs for sequence pairs.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
323 |
+
"""
|
324 |
+
assert token_ids_1 is None
|
325 |
+
cls = [self.cls_token_id]
|
326 |
+
eos = [self.eos_token_id]
|
327 |
+
return cls + token_ids_0 + eos
|
328 |
+
|
329 |
+
|
330 |
+
class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin):
|
331 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
332 |
+
truncation_side: str = "left"
|
333 |
+
|
334 |
+
@property
|
335 |
+
def gmask_token_id(self) -> int:
|
336 |
+
raise NotImplementedError("The model doesn't support gMASK")
|
337 |
+
|
338 |
+
@property
|
339 |
+
def smask_token_id(self) -> int:
|
340 |
+
raise NotImplementedError("The model doesn't support sMASK")
|
341 |
+
|
342 |
+
@property
|
343 |
+
def mask_token_ids(self):
|
344 |
+
return [self.mask_token_id]
|
345 |
+
|
346 |
+
|
347 |
+
class GLMTokenizer:
|
348 |
+
@classmethod
|
349 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
350 |
+
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
351 |
+
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
|
352 |
+
if config_tokenizer_class == "GLMRobertaTokenizer":
|
353 |
+
tokenizer_class = GLMRobertaTokenizer
|
354 |
+
elif config_tokenizer_class == "GLMChineseTokenizer":
|
355 |
+
tokenizer_class = GLMChineseTokenizer
|
356 |
+
elif config_tokenizer_class == "GLMGPT2Tokenizer":
|
357 |
+
tokenizer_class = GLMGPT2Tokenizer
|
358 |
+
elif config_tokenizer_class == "GLMBertTokenizer":
|
359 |
+
tokenizer_class = GLMBertTokenizer
|
360 |
+
else:
|
361 |
+
raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class)
|
362 |
+
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/glm-2b",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|endoftext|>",
|
5 |
+
"cls_token": "[CLS]",
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"unk_token": "[UNK]",
|
8 |
+
"additional_special_tokens": ["<|startofpiece|>", "<|endofpiece|>", "[gMASK]", "[sMASK]"],
|
9 |
+
"add_prefix_space": false,
|
10 |
+
"tokenizer_class": "GLMGPT2Tokenizer",
|
11 |
+
"use_fast": false,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoTokenizer": [
|
14 |
+
"tokenization_glm.GLMGPT2Tokenizer",
|
15 |
+
null
|
16 |
+
]
|
17 |
+
}
|
18 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|