Tahsin-Mayeesha
commited on
Commit
β’
93235fb
1
Parent(s):
258816a
add evaluation results with language model
Browse files- .ipynb_checkpoints/add lm decoder-checkpoint.ipynb +6 -0
- .ipynb_checkpoints/preprocessor_config-checkpoint.json +10 -0
- add lm decoder.ipynb +399 -0
- {.ipynb_checkpoints β evaluations_no_lm/.ipynb_checkpoints}/OPENSLR_bn_test_eval_results-checkpoint.txt +0 -0
- {.ipynb_checkpoints β evaluations_no_lm/.ipynb_checkpoints}/log_OPENSLR_bn_test_predictions-checkpoint.txt +0 -0
- OPENSLR_bn_test_eval_results.txt β evaluations_no_lm/OPENSLR_bn_test_eval_results.txt +0 -0
- log_OPENSLR_bn_test_predictions.txt β evaluations_no_lm/log_OPENSLR_bn_test_predictions.txt +0 -0
- log_OPENSLR_bn_test_targets.txt β evaluations_no_lm/log_OPENSLR_bn_test_targets.txt +0 -0
- evaluations_with_lm/.ipynb_checkpoints/openslr_bn_test_eval_results-checkpoint.txt +2 -0
- evaluations_with_lm/log_openslr_bn_test_predictions.txt +0 -0
- evaluations_with_lm/log_openslr_bn_test_targets.txt +0 -0
- evaluations_with_lm/openslr_bn_test_eval_results.txt +2 -0
.ipynb_checkpoints/add lm decoder-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
.ipynb_checkpoints/preprocessor_config-checkpoint.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
add lm decoder.ipynb
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "db2971a9",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "29f15da8fd9549188347df46955b078d",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"VBox(children=(HTML(value='<center>\\n<img src=https://huggingface.co/front/assets/huggingface_logo-noborder.svβ¦"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"from huggingface_hub import notebook_login\n",
|
26 |
+
"\n",
|
27 |
+
"notebook_login()"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "2377a1e5",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"Cloning https://huggingface.co/Tahsin-Mayeesha/wav2vec2-bn-300m into local empty directory.\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "9eacbc3325314c0b9e70d738ea655554",
|
47 |
+
"version_major": 2,
|
48 |
+
"version_minor": 0
|
49 |
+
},
|
50 |
+
"text/plain": [
|
51 |
+
"Download file pytorch_model.bin: 0%| | 594/1.18G [00:00<?, ?B/s]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"data": {
|
59 |
+
"application/vnd.jupyter.widget-view+json": {
|
60 |
+
"model_id": "abce727d7bdc4291b5b8158ba46ca359",
|
61 |
+
"version_major": 2,
|
62 |
+
"version_minor": 0
|
63 |
+
},
|
64 |
+
"text/plain": [
|
65 |
+
"Download file runs/Feb02_18-57-15_job-adbfa1a2-412e-4cc9-8438-18b8de11318f/events.out.tfevents.1643828376.job-β¦"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"metadata": {},
|
69 |
+
"output_type": "display_data"
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"data": {
|
73 |
+
"application/vnd.jupyter.widget-view+json": {
|
74 |
+
"model_id": "990958b3a4894a58bbc7b275683aadc5",
|
75 |
+
"version_major": 2,
|
76 |
+
"version_minor": 0
|
77 |
+
},
|
78 |
+
"text/plain": [
|
79 |
+
"Download file runs/Feb02_18-57-15_job-adbfa1a2-412e-4cc9-8438-18b8de11318f/1643828376.0908198/events.out.tfeveβ¦"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
"metadata": {},
|
83 |
+
"output_type": "display_data"
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"data": {
|
87 |
+
"application/vnd.jupyter.widget-view+json": {
|
88 |
+
"model_id": "0e7b5cf37e13411f861ab6f97a7086f5",
|
89 |
+
"version_major": 2,
|
90 |
+
"version_minor": 0
|
91 |
+
},
|
92 |
+
"text/plain": [
|
93 |
+
"Download file training_args.bin: 100%|##########| 2.92k/2.92k [00:00<?, ?B/s]"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
"metadata": {},
|
97 |
+
"output_type": "display_data"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"application/vnd.jupyter.widget-view+json": {
|
102 |
+
"model_id": "083dfac65da1440bbb1b44d0ef9736b2",
|
103 |
+
"version_major": 2,
|
104 |
+
"version_minor": 0
|
105 |
+
},
|
106 |
+
"text/plain": [
|
107 |
+
"Clean file runs/Feb02_18-57-15_job-adbfa1a2-412e-4cc9-8438-18b8de11318f/1643828376.0908198/events.out.tfeventsβ¦"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"metadata": {},
|
111 |
+
"output_type": "display_data"
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"data": {
|
115 |
+
"application/vnd.jupyter.widget-view+json": {
|
116 |
+
"model_id": "de458e6cd4844842a9518ab9a6555742",
|
117 |
+
"version_major": 2,
|
118 |
+
"version_minor": 0
|
119 |
+
},
|
120 |
+
"text/plain": [
|
121 |
+
"Clean file training_args.bin: 34%|###4 | 1.00k/2.92k [00:00<?, ?B/s]"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
"metadata": {},
|
125 |
+
"output_type": "display_data"
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"data": {
|
129 |
+
"application/vnd.jupyter.widget-view+json": {
|
130 |
+
"model_id": "83b6f9d8c39649e382025e1462d12ee0",
|
131 |
+
"version_major": 2,
|
132 |
+
"version_minor": 0
|
133 |
+
},
|
134 |
+
"text/plain": [
|
135 |
+
"Clean file runs/Feb02_18-57-15_job-adbfa1a2-412e-4cc9-8438-18b8de11318f/events.out.tfevents.1643828376.job-adbβ¦"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"metadata": {},
|
139 |
+
"output_type": "display_data"
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"application/vnd.jupyter.widget-view+json": {
|
144 |
+
"model_id": "95142f5b1abc4218b5ed797b9edffbbc",
|
145 |
+
"version_major": 2,
|
146 |
+
"version_minor": 0
|
147 |
+
},
|
148 |
+
"text/plain": [
|
149 |
+
"Clean file pytorch_model.bin: 0%| | 1.00k/1.18G [00:00<?, ?B/s]"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
"metadata": {},
|
153 |
+
"output_type": "display_data"
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"source": [
|
157 |
+
"from huggingface_hub import Repository\n",
|
158 |
+
"\n",
|
159 |
+
"repo = Repository(local_dir=\"wav2vec2-bn-300m\", clone_from=\"Tahsin-Mayeesha/wav2vec2-bn-300m\")"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 4,
|
165 |
+
"id": "091991cd",
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [
|
168 |
+
{
|
169 |
+
"data": {
|
170 |
+
"application/vnd.jupyter.widget-view+json": {
|
171 |
+
"model_id": "ab4eb980966140b7a6bca34bc51c3fd2",
|
172 |
+
"version_major": 2,
|
173 |
+
"version_minor": 0
|
174 |
+
},
|
175 |
+
"text/plain": [
|
176 |
+
"Downloading: 0%| | 0.00/212 [00:00<?, ?B/s]"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "display_data"
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"data": {
|
184 |
+
"application/vnd.jupyter.widget-view+json": {
|
185 |
+
"model_id": "442c24c800b949238d33dd9ad2100c09",
|
186 |
+
"version_major": 2,
|
187 |
+
"version_minor": 0
|
188 |
+
},
|
189 |
+
"text/plain": [
|
190 |
+
"Downloading: 0%| | 0.00/260 [00:00<?, ?B/s]"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"metadata": {},
|
194 |
+
"output_type": "display_data"
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"data": {
|
198 |
+
"application/vnd.jupyter.widget-view+json": {
|
199 |
+
"model_id": "69504d7b2d994c6789cdc9b27c00bc5b",
|
200 |
+
"version_major": 2,
|
201 |
+
"version_minor": 0
|
202 |
+
},
|
203 |
+
"text/plain": [
|
204 |
+
"Downloading: 0%| | 0.00/1.99k [00:00<?, ?B/s]"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"metadata": {},
|
208 |
+
"output_type": "display_data"
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"data": {
|
212 |
+
"application/vnd.jupyter.widget-view+json": {
|
213 |
+
"model_id": "f8290e53eb4f402e99b6d71bd5836955",
|
214 |
+
"version_major": 2,
|
215 |
+
"version_minor": 0
|
216 |
+
},
|
217 |
+
"text/plain": [
|
218 |
+
"Downloading: 0%| | 0.00/1.13k [00:00<?, ?B/s]"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
"metadata": {},
|
222 |
+
"output_type": "display_data"
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"data": {
|
226 |
+
"application/vnd.jupyter.widget-view+json": {
|
227 |
+
"model_id": "abaa5f4a82de4ec8b27a67178addfcb9",
|
228 |
+
"version_major": 2,
|
229 |
+
"version_minor": 0
|
230 |
+
},
|
231 |
+
"text/plain": [
|
232 |
+
"Downloading: 0%| | 0.00/25.0 [00:00<?, ?B/s]"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
"metadata": {},
|
236 |
+
"output_type": "display_data"
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"data": {
|
240 |
+
"application/vnd.jupyter.widget-view+json": {
|
241 |
+
"model_id": "9b6186e1a4df4999b71e8ea2e8f9d392",
|
242 |
+
"version_major": 2,
|
243 |
+
"version_minor": 0
|
244 |
+
},
|
245 |
+
"text/plain": [
|
246 |
+
"Downloading: 0%| | 0.00/309 [00:00<?, ?B/s]"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
"metadata": {},
|
250 |
+
"output_type": "display_data"
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"source": [
|
254 |
+
"from transformers import AutoProcessor\n",
|
255 |
+
"processor = AutoProcessor.from_pretrained(\"Tahsin-Mayeesha/wav2vec2-bn-300m\")"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 5,
|
261 |
+
"id": "3507c167",
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [],
|
264 |
+
"source": [
|
265 |
+
"vocab_dict = processor.tokenizer.get_vocab()\n",
|
266 |
+
"sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 6,
|
272 |
+
"id": "15ee83a8",
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [
|
275 |
+
{
|
276 |
+
"name": "stderr",
|
277 |
+
"output_type": "stream",
|
278 |
+
"text": [
|
279 |
+
"Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n"
|
280 |
+
]
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"from pyctcdecode import build_ctcdecoder\n",
|
285 |
+
"\n",
|
286 |
+
"decoder = build_ctcdecoder(\n",
|
287 |
+
" labels=list(sorted_vocab_dict.keys()),\n",
|
288 |
+
" kenlm_model_path=\"5gram.arpa\",\n",
|
289 |
+
")"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": 7,
|
295 |
+
"id": "46585ac6",
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [],
|
298 |
+
"source": [
|
299 |
+
"from transformers import Wav2Vec2ProcessorWithLM\n",
|
300 |
+
"\n",
|
301 |
+
"processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
|
302 |
+
" feature_extractor=processor.feature_extractor,\n",
|
303 |
+
" tokenizer=processor.tokenizer,\n",
|
304 |
+
" decoder=decoder\n",
|
305 |
+
")"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": 8,
|
311 |
+
"id": "c17befdc",
|
312 |
+
"metadata": {},
|
313 |
+
"outputs": [],
|
314 |
+
"source": [
|
315 |
+
"processor_with_lm.save_pretrained(\"wav2vec2-bn-300m\")"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": 9,
|
321 |
+
"id": "f3ec60c4",
|
322 |
+
"metadata": {},
|
323 |
+
"outputs": [
|
324 |
+
{
|
325 |
+
"name": "stderr",
|
326 |
+
"output_type": "stream",
|
327 |
+
"text": [
|
328 |
+
"Adding files tracked by Git LFS: ['language_model/unigrams.txt']. This may take a bit of time if the files are large.\n"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"data": {
|
333 |
+
"application/vnd.jupyter.widget-view+json": {
|
334 |
+
"model_id": "7aa6e28e8a9c49b79b09f5d2884383d7",
|
335 |
+
"version_major": 2,
|
336 |
+
"version_minor": 0
|
337 |
+
},
|
338 |
+
"text/plain": [
|
339 |
+
"Upload file language_model/unigrams.txt: 0%| | 3.38k/22.3M [00:00<?, ?B/s]"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
"metadata": {},
|
343 |
+
"output_type": "display_data"
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"name": "stderr",
|
347 |
+
"output_type": "stream",
|
348 |
+
"text": [
|
349 |
+
"To https://huggingface.co/Tahsin-Mayeesha/wav2vec2-bn-300m\n",
|
350 |
+
" b6e6996..258816a main -> main\n",
|
351 |
+
"\n"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"data": {
|
356 |
+
"text/plain": [
|
357 |
+
"'https://huggingface.co/Tahsin-Mayeesha/wav2vec2-bn-300m/commit/258816acfe8e1e49f41b4edcf9f20f812b4bf00d'"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
"execution_count": 9,
|
361 |
+
"metadata": {},
|
362 |
+
"output_type": "execute_result"
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"source": [
|
366 |
+
"repo.push_to_hub(commit_message=\"Upload lm-boosted decoder\")"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": null,
|
372 |
+
"id": "add2d4ca",
|
373 |
+
"metadata": {},
|
374 |
+
"outputs": [],
|
375 |
+
"source": []
|
376 |
+
}
|
377 |
+
],
|
378 |
+
"metadata": {
|
379 |
+
"kernelspec": {
|
380 |
+
"display_name": "Python 3",
|
381 |
+
"language": "python",
|
382 |
+
"name": "python3"
|
383 |
+
},
|
384 |
+
"language_info": {
|
385 |
+
"codemirror_mode": {
|
386 |
+
"name": "ipython",
|
387 |
+
"version": 3
|
388 |
+
},
|
389 |
+
"file_extension": ".py",
|
390 |
+
"mimetype": "text/x-python",
|
391 |
+
"name": "python",
|
392 |
+
"nbconvert_exporter": "python",
|
393 |
+
"pygments_lexer": "ipython3",
|
394 |
+
"version": "3.8.8"
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"nbformat": 4,
|
398 |
+
"nbformat_minor": 5
|
399 |
+
}
|
{.ipynb_checkpoints β evaluations_no_lm/.ipynb_checkpoints}/OPENSLR_bn_test_eval_results-checkpoint.txt
RENAMED
File without changes
|
{.ipynb_checkpoints β evaluations_no_lm/.ipynb_checkpoints}/log_OPENSLR_bn_test_predictions-checkpoint.txt
RENAMED
File without changes
|
OPENSLR_bn_test_eval_results.txt β evaluations_no_lm/OPENSLR_bn_test_eval_results.txt
RENAMED
File without changes
|
log_OPENSLR_bn_test_predictions.txt β evaluations_no_lm/log_OPENSLR_bn_test_predictions.txt
RENAMED
File without changes
|
log_OPENSLR_bn_test_targets.txt β evaluations_no_lm/log_OPENSLR_bn_test_targets.txt
RENAMED
File without changes
|
evaluations_with_lm/.ipynb_checkpoints/openslr_bn_test_eval_results-checkpoint.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.17776164652632478
|
2 |
+
CER: 0.04394092712884769
|
evaluations_with_lm/log_openslr_bn_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations_with_lm/log_openslr_bn_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluations_with_lm/openslr_bn_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.17776164652632478
|
2 |
+
CER: 0.04394092712884769
|