File size: 1,557 Bytes
418534d
 
 
 
 
 
96cfbf9
 
 
 
 
418534d
 
 
 
 
e39226a
 
96cfbf9
418534d
40c44e5
96cfbf9
40c44e5
418534d
40c44e5
418534d
40c44e5
418534d
6c8ff29
418534d
40c44e5
6c8ff29
 
 
 
 
 
 
40c44e5
418534d
 
 
 
 
 
 
 
 
 
 
e39226a
859137b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- modern
- handwritten
metrics:
- CER
- WER
language:
- fr
datasets:
- Teklia/rimes-2011-lines
pipeline_tag: image-to-text
---

# PyLaia - RIMES

This model performs Handwritten Text Recognition in French.

## Model description

The model has been trained using the PyLaia library on the [RIMES](https://teklia.com/research/rimes-database/) dataset.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

| split | N lines | 
| ----- | ------: | 
| train | 10,188  |
| val   |  1,138  |
| test  |    778  |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the RIMES training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | N lines   |
|:------|:---------------|:----------:|:-------:|----------:|
| test  | no             | 4.53       | 15.06   |      778  |
| test  | yes            | 3.47       | 10.20   |      778  |

## How to use

Please refer to the [documentation](https://atr.pages.teklia.com/pylaia/).

## Cite us

```bibtex
@inproceedings{pylaia-lib,
    author = "Tarride, Solène and Schneider, Yoann and Generali, Marie and Boillet, Melodie and Abadie, Bastien and Kermorvant, Christopher",
    title = "Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library",
    booktitle = "Submitted at ICDAR2024",
    year = "2024"
}
```