--- license: other license_name: tencent-hunyuan-community license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt language: - en --- # HunyuanDiT TensorRT Acceleration Language: **English** | [**δΈ­ζ–‡**](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs/blob/main/README_zh.md) We provide a TensorRT version of [HunyuanDiT](https://github.com/Tencent/HunyuanDiT) for inference acceleration (faster than flash attention). One can convert the torch model to TensorRT model using the following steps based on **TensorRT-9.2.0.5** and **cuda (11.7 or 11.8)**. > ⚠️ Important Reminder (Suggestion for testing the TensorRT acceleration version): > We recommend users to test the TensorRT version on NVIDIA GPUs with Compute Capability >= 8.0,(For example, RTX4090, > RTX3090, H800, A10/A100/A800, etc.) you can query the Compute Capability corresponding to your GPU from > [here](https://developer.nvidia.com/cuda-gpus#compute). For NVIDIA GPUs with Compute Capability < 8.0, if you want to > try the TensorRT version, you may encounter errors that the TensorRT Engine file cannot be generated or the inference > performance is poor, the main reason is that TensorRT does not support fused mha kernel on this architecture. ## πŸ›  Instructions ### 1. Download dependencies from huggingface. ```shell cd HunyuanDiT # Use the huggingface-cli tool to download the model. huggingface-cli download Tencent-Hunyuan/TensorRT-libs --local-dir ./ckpts/t2i/model_trt ``` ### 2. Install the TensorRT dependencies. ```shell sh trt/install.sh ``` ### 3. Build the TensorRT engine. #### Method 1: Use the prebuilt engine We provide some prebuilt TensorRT engines. | Supported GPU | Download Link | Remote Path | |:----------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------:| | GeForce RTX 3090 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/RTX3090/model_onnx.plan) | `engines/RTX3090/model_onnx.plan` | | GeForce RTX 4090 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/RTX4090/model_onnx.plan) | `engines/RTX4090/model_onnx.plan` | | A100 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/A100/model_onnx.plan) | `engines/A100/model_onnx.plan` | Use the following command to download and place the engine in the specified location. ```shell huggingface-cli download Tencent-Hunyuan/TensorRT-engine --local-dir ./ckpts/t2i/model_trt/engine ``` #### Method 2: Build your own engine If you are using a different GPU, you can build the engine using the following command. ```shell # Set the TensorRT build environment variables first. We provide a script to set up the environment. source trt/activate.sh # Build the TensorRT engine. By default, it will read the `ckpts` folder in the current directory. sh trt/build_engine.sh ``` Finally, if you see the output like `&&&& PASSED TensorRT.trtexec [TensorRT v9200]`, the engine is built successfully. ### 4. Run the inference using the TensorRT model. ```shell # Run the inference using the prompt-enhanced model + HunyuanDiT TensorRT model. python sample_t2i.py --prompt "ζΈ”θˆŸε”±ζ™š" --infer-mode trt # Close prompt enhancement. (save GPU memory) python sample_t2i.py --prompt "ζΈ”θˆŸε”±ζ™š" --infer-mode trt --no-enhance ``` ## ❓ Q&A Please refer to the [Q&A](./QA.md) for more questions and answers about building the TensorRT Engine.