Upload README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
datasets:
|
3 |
- ehartford/wizard_vicuna_70k_unfiltered
|
4 |
inference: false
|
5 |
-
license:
|
6 |
model_creator: Jarrad Hope
|
7 |
model_link: https://huggingface.co/jarradh/llama2_70b_chat_uncensored
|
8 |
model_name: Llama2 70B Chat Uncensored
|
@@ -10,20 +10,26 @@ model_type: llama
|
|
10 |
quantized_by: TheBloke
|
11 |
tags:
|
12 |
- uncensored
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- header start -->
|
16 |
-
|
17 |
-
|
|
|
18 |
</div>
|
19 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
20 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
21 |
-
<p><a href="https://discord.gg/theblokeai">Chat & support:
|
22 |
</div>
|
23 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
24 |
-
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
25 |
</div>
|
26 |
</div>
|
|
|
|
|
27 |
<!-- header end -->
|
28 |
|
29 |
# Llama2 70B Chat Uncensored - GGML
|
@@ -34,7 +40,15 @@ tags:
|
|
34 |
|
35 |
This repo contains GGML format model files for [Jarrad Hope's Llama2 70B Chat Uncensored](https://huggingface.co/jarradh/llama2_70b_chat_uncensored).
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
* [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
|
39 |
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
|
40 |
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
|
@@ -45,7 +59,8 @@ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NV
|
|
45 |
## Repositories available
|
46 |
|
47 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ)
|
48 |
-
* [2, 3, 4, 5, 6 and 8-bit
|
|
|
49 |
* [Jarrad Hope's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jarradh/llama2_70b_chat_uncensored)
|
50 |
|
51 |
## Prompt template: Human-Response
|
@@ -55,12 +70,17 @@ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NV
|
|
55 |
{prompt}
|
56 |
|
57 |
### RESPONSE:
|
|
|
58 |
```
|
59 |
|
60 |
<!-- compatibility_ggml start -->
|
61 |
## Compatibility
|
62 |
|
63 |
-
###
|
|
|
|
|
|
|
|
|
64 |
|
65 |
Or one of the other tools and libraries listed above.
|
66 |
|
@@ -89,39 +109,48 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
89 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
90 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
91 |
| [llama2_70b_chat_uncensored.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q2_K.bin) | q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
92 |
-
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
93 |
-
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
94 |
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
|
|
|
|
95 |
| [llama2_70b_chat_uncensored.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. |
|
96 |
-
| [llama2_70b_chat_uncensored.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
97 |
-
| [llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
98 |
| [llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
|
|
|
|
99 |
| [llama2_70b_chat_uncensored.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
100 |
-
| [llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
101 |
| [llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
|
|
102 |
|
103 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
104 |
|
105 |
## How to run in `llama.cpp`
|
106 |
|
|
|
|
|
|
|
|
|
107 |
I use the following command line; adjust for your tastes and needs:
|
108 |
|
109 |
```
|
110 |
-
./main -t 10 -ngl 40 -gqa 8 -m llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\
|
111 |
```
|
112 |
-
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
113 |
|
114 |
-
Change
|
|
|
|
|
115 |
|
116 |
Remember the `-gqa 8` argument, required for Llama 70B models.
|
117 |
|
118 |
-
|
|
|
|
|
119 |
|
120 |
## How to run in `text-generation-webui`
|
121 |
|
122 |
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
|
123 |
|
124 |
<!-- footer start -->
|
|
|
125 |
## Discord
|
126 |
|
127 |
For further support, and discussions on these models and AI in general, join us at:
|
@@ -141,13 +170,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
141 |
* Patreon: https://patreon.com/TheBlokeAI
|
142 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
143 |
|
144 |
-
**Special thanks to**:
|
145 |
|
146 |
-
**Patreon special mentions**:
|
147 |
|
148 |
|
149 |
Thank you to all my generous patrons and donaters!
|
150 |
|
|
|
|
|
151 |
<!-- footer end -->
|
152 |
|
153 |
# Original model card: Jarrad Hope's Llama2 70B Chat Uncensored
|
@@ -157,6 +188,9 @@ Thank you to all my generous patrons and donaters!
|
|
157 |
Fine-tuned [Llama-2 70B](https://huggingface.co/TheBloke/Llama-2-70B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
|
158 |
[QLoRA](https://arxiv.org/abs/2305.14314) was used for fine-tuning. The model was trained for three epochs on a single NVIDIA A100 80GB GPU instance, taking ~1 week to train.
|
159 |
|
|
|
|
|
|
|
160 |
Special thanks to [George Sung](https://huggingface.co/georgesung) for creating [llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored), and to [Eric Hartford](https://huggingface.co/ehartford/) for creating [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
|
161 |
|
162 |
The version here is the fp16 HuggingFace model.
|
@@ -166,7 +200,9 @@ In 4 bit mode, the model fits into 51% of A100 80GB (40.8GB) 41559MiB
|
|
166 |
500gb of RAM/Swap was required to merge the model.
|
167 |
|
168 |
## GGML & GPTQ versions
|
169 |
-
|
|
|
|
|
170 |
|
171 |
# Prompt style
|
172 |
The model was trained with the following prompt style:
|
|
|
2 |
datasets:
|
3 |
- ehartford/wizard_vicuna_70k_unfiltered
|
4 |
inference: false
|
5 |
+
license: llama2
|
6 |
model_creator: Jarrad Hope
|
7 |
model_link: https://huggingface.co/jarradh/llama2_70b_chat_uncensored
|
8 |
model_name: Llama2 70B Chat Uncensored
|
|
|
10 |
quantized_by: TheBloke
|
11 |
tags:
|
12 |
- uncensored
|
13 |
+
- wizard
|
14 |
+
- vicuna
|
15 |
+
- llama
|
16 |
---
|
17 |
|
18 |
<!-- header start -->
|
19 |
+
<!-- 200823 -->
|
20 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
21 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
22 |
</div>
|
23 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
24 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
25 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
26 |
</div>
|
27 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
28 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
29 |
</div>
|
30 |
</div>
|
31 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
32 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
33 |
<!-- header end -->
|
34 |
|
35 |
# Llama2 70B Chat Uncensored - GGML
|
|
|
40 |
|
41 |
This repo contains GGML format model files for [Jarrad Hope's Llama2 70B Chat Uncensored](https://huggingface.co/jarradh/llama2_70b_chat_uncensored).
|
42 |
|
43 |
+
### Important note regarding GGML files.
|
44 |
+
|
45 |
+
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
|
46 |
+
|
47 |
+
Please use the GGUF models instead.
|
48 |
+
|
49 |
+
### About GGML
|
50 |
+
|
51 |
+
GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
|
52 |
* [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
|
53 |
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
|
54 |
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
|
|
|
59 |
## Repositories available
|
60 |
|
61 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ)
|
62 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGUF)
|
63 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML)
|
64 |
* [Jarrad Hope's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jarradh/llama2_70b_chat_uncensored)
|
65 |
|
66 |
## Prompt template: Human-Response
|
|
|
70 |
{prompt}
|
71 |
|
72 |
### RESPONSE:
|
73 |
+
|
74 |
```
|
75 |
|
76 |
<!-- compatibility_ggml start -->
|
77 |
## Compatibility
|
78 |
|
79 |
+
### Works with llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) until August 21st, 2023
|
80 |
+
|
81 |
+
Will not work with `llama.cpp` after commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa).
|
82 |
+
|
83 |
+
For compatibility with latest llama.cpp, please use GGUF files instead.
|
84 |
|
85 |
Or one of the other tools and libraries listed above.
|
86 |
|
|
|
109 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
110 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
111 |
| [llama2_70b_chat_uncensored.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q2_K.bin) | q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
|
|
|
|
112 |
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
113 |
+
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
114 |
+
| [llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
115 |
| [llama2_70b_chat_uncensored.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. |
|
|
|
|
|
116 |
| [llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
117 |
+
| [llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
118 |
+
| [llama2_70b_chat_uncensored.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
119 |
| [llama2_70b_chat_uncensored.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
|
|
120 |
| [llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
121 |
+
| [llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
122 |
|
123 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
124 |
|
125 |
## How to run in `llama.cpp`
|
126 |
|
127 |
+
Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
|
128 |
+
|
129 |
+
For compatibility with latest llama.cpp, please use GGUF files instead.
|
130 |
+
|
131 |
I use the following command line; adjust for your tastes and needs:
|
132 |
|
133 |
```
|
134 |
+
./main -t 10 -ngl 40 -gqa 8 -m llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\n{prompt}\n\n### RESPONSE:"
|
135 |
```
|
136 |
+
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
|
137 |
|
138 |
+
Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
|
139 |
+
|
140 |
+
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
141 |
|
142 |
Remember the `-gqa 8` argument, required for Llama 70B models.
|
143 |
|
144 |
+
Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
|
145 |
+
|
146 |
+
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
|
147 |
|
148 |
## How to run in `text-generation-webui`
|
149 |
|
150 |
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
|
151 |
|
152 |
<!-- footer start -->
|
153 |
+
<!-- 200823 -->
|
154 |
## Discord
|
155 |
|
156 |
For further support, and discussions on these models and AI in general, join us at:
|
|
|
170 |
* Patreon: https://patreon.com/TheBlokeAI
|
171 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
172 |
|
173 |
+
**Special thanks to**: Aemon Algiz.
|
174 |
|
175 |
+
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
|
176 |
|
177 |
|
178 |
Thank you to all my generous patrons and donaters!
|
179 |
|
180 |
+
And thank you again to a16z for their generous grant.
|
181 |
+
|
182 |
<!-- footer end -->
|
183 |
|
184 |
# Original model card: Jarrad Hope's Llama2 70B Chat Uncensored
|
|
|
188 |
Fine-tuned [Llama-2 70B](https://huggingface.co/TheBloke/Llama-2-70B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
|
189 |
[QLoRA](https://arxiv.org/abs/2305.14314) was used for fine-tuning. The model was trained for three epochs on a single NVIDIA A100 80GB GPU instance, taking ~1 week to train.
|
190 |
|
191 |
+
Please note that LLama 2 Base model has its inherit biases.
|
192 |
+
Uncensored refers to the [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered) dataset.
|
193 |
+
|
194 |
Special thanks to [George Sung](https://huggingface.co/georgesung) for creating [llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored), and to [Eric Hartford](https://huggingface.co/ehartford/) for creating [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
|
195 |
|
196 |
The version here is the fp16 HuggingFace model.
|
|
|
200 |
500gb of RAM/Swap was required to merge the model.
|
201 |
|
202 |
## GGML & GPTQ versions
|
203 |
+
Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
|
204 |
+
* https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML
|
205 |
+
* https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ
|
206 |
|
207 |
# Prompt style
|
208 |
The model was trained with the following prompt style:
|