Transformers
llama
uncensored
wizard
vicuna
TheBloke commited on
Commit
1332467
1 Parent(s): 6f68397

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -20
README.md CHANGED
@@ -2,7 +2,7 @@
2
  datasets:
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
- license: other
6
  model_creator: Jarrad Hope
7
  model_link: https://huggingface.co/jarradh/llama2_70b_chat_uncensored
8
  model_name: Llama2 70B Chat Uncensored
@@ -10,20 +10,26 @@ model_type: llama
10
  quantized_by: TheBloke
11
  tags:
12
  - uncensored
 
 
 
13
  ---
14
 
15
  <!-- header start -->
16
- <div style="width: 100%;">
17
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
18
  </div>
19
  <div style="display: flex; justify-content: space-between; width: 100%;">
20
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
21
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
22
  </div>
23
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
24
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
25
  </div>
26
  </div>
 
 
27
  <!-- header end -->
28
 
29
  # Llama2 70B Chat Uncensored - GGML
@@ -34,7 +40,15 @@ tags:
34
 
35
  This repo contains GGML format model files for [Jarrad Hope's Llama2 70B Chat Uncensored](https://huggingface.co/jarradh/llama2_70b_chat_uncensored).
36
 
37
- GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with CUDA GPU acceleration:
 
 
 
 
 
 
 
 
38
  * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
39
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
40
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
@@ -45,7 +59,8 @@ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NV
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ)
48
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML)
 
49
  * [Jarrad Hope's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jarradh/llama2_70b_chat_uncensored)
50
 
51
  ## Prompt template: Human-Response
@@ -55,12 +70,17 @@ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NV
55
  {prompt}
56
 
57
  ### RESPONSE:
 
58
  ```
59
 
60
  <!-- compatibility_ggml start -->
61
  ## Compatibility
62
 
63
- ### Requires llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) or later.
 
 
 
 
64
 
65
  Or one of the other tools and libraries listed above.
66
 
@@ -89,39 +109,48 @@ Refer to the Provided Files table below to see what files use which methods, and
89
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
90
  | ---- | ---- | ---- | ---- | ---- | ----- |
91
  | [llama2_70b_chat_uncensored.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q2_K.bin) | q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
92
- | [llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
93
- | [llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
94
  | [llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
 
 
95
  | [llama2_70b_chat_uncensored.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. |
96
- | [llama2_70b_chat_uncensored.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
97
- | [llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
98
  | [llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
 
 
99
  | [llama2_70b_chat_uncensored.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
100
- | [llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
101
  | [llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
 
102
 
103
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
104
 
105
  ## How to run in `llama.cpp`
106
 
 
 
 
 
107
  I use the following command line; adjust for your tastes and needs:
108
 
109
  ```
110
- ./main -t 10 -ngl 40 -gqa 8 -m llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\nWrite a story about llamas\n\n### RESPONSE:"
111
  ```
112
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
113
 
114
- Change -ngl 40 to the number of GPU layers you have VRAM for. Use -ngl 100 to offload all layers to VRAM, if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
 
 
115
 
116
  Remember the `-gqa 8` argument, required for Llama 70B models.
117
 
118
- If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
 
 
119
 
120
  ## How to run in `text-generation-webui`
121
 
122
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
123
 
124
  <!-- footer start -->
 
125
  ## Discord
126
 
127
  For further support, and discussions on these models and AI in general, join us at:
@@ -141,13 +170,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
141
  * Patreon: https://patreon.com/TheBlokeAI
142
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
143
 
144
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
145
 
146
- **Patreon special mentions**: Willem Michiel, Ajan Kanaga, Cory Kujawski, Alps Aficionado, Nikolai Manek, Jonathan Leane, Stanislav Ovsiannikov, Michael Levine, Luke Pendergrass, Sid, K, Gabriel Tamborski, Clay Pascal, Kalila, William Sang, Will Dee, Pieter, Nathan LeClaire, ya boyyy, David Flickinger, vamX, Derek Yates, Fen Risland, Jeffrey Morgan, webtim, Daniel P. Andersen, Chadd, Edmond Seymore, Pyrater, Olusegun Samson, Lone Striker, biorpg, alfie_i, Mano Prime, Chris Smitley, Dave, zynix, Trenton Dambrowitz, Johann-Peter Hartmann, Magnesian, Spencer Kim, John Detwiler, Iucharbius, Gabriel Puliatti, LangChain4j, Luke @flexchar, Vadim, Rishabh Srivastava, Preetika Verma, Ai Maven, Femi Adebogun, WelcomeToTheClub, Leonard Tan, Imad Khwaja, Steven Wood, Stefan Sabev, Sebastain Graf, usrbinkat, Dan Guido, Sam, Eugene Pentland, Mandus, transmissions 11, Slarti, Karl Bernard, Spiking Neurons AB, Artur Olbinski, Joseph William Delisle, ReadyPlayerEmma, Olakabola, Asp the Wyvern, Space Cruiser, Matthew Berman, Randy H, subjectnull, danny, John Villwock, Illia Dulskyi, Rainer Wilmers, theTransient, Pierre Kircher, Alexandros Triantafyllidis, Viktor Bowallius, terasurfer, Deep Realms, SuperWojo, senxiiz, Oscar Rangel, Alex, Stephen Murray, Talal Aujan, Raven Klaugh, Sean Connelly, Raymond Fosdick, Fred von Graf, chris gileta, Junyu Yang, Elle
147
 
148
 
149
  Thank you to all my generous patrons and donaters!
150
 
 
 
151
  <!-- footer end -->
152
 
153
  # Original model card: Jarrad Hope's Llama2 70B Chat Uncensored
@@ -157,6 +188,9 @@ Thank you to all my generous patrons and donaters!
157
  Fine-tuned [Llama-2 70B](https://huggingface.co/TheBloke/Llama-2-70B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
158
  [QLoRA](https://arxiv.org/abs/2305.14314) was used for fine-tuning. The model was trained for three epochs on a single NVIDIA A100 80GB GPU instance, taking ~1 week to train.
159
 
 
 
 
160
  Special thanks to [George Sung](https://huggingface.co/georgesung) for creating [llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored), and to [Eric Hartford](https://huggingface.co/ehartford/) for creating [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
161
 
162
  The version here is the fp16 HuggingFace model.
@@ -166,7 +200,9 @@ In 4 bit mode, the model fits into 51% of A100 80GB (40.8GB) 41559MiB
166
  500gb of RAM/Swap was required to merge the model.
167
 
168
  ## GGML & GPTQ versions
169
- TODO
 
 
170
 
171
  # Prompt style
172
  The model was trained with the following prompt style:
 
2
  datasets:
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
+ license: llama2
6
  model_creator: Jarrad Hope
7
  model_link: https://huggingface.co/jarradh/llama2_70b_chat_uncensored
8
  model_name: Llama2 70B Chat Uncensored
 
10
  quantized_by: TheBloke
11
  tags:
12
  - uncensored
13
+ - wizard
14
+ - vicuna
15
+ - llama
16
  ---
17
 
18
  <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
  </div>
23
  <div style="display: flex; justify-content: space-between; width: 100%;">
24
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
  </div>
27
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
  </div>
30
  </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
  <!-- header end -->
34
 
35
  # Llama2 70B Chat Uncensored - GGML
 
40
 
41
  This repo contains GGML format model files for [Jarrad Hope's Llama2 70B Chat Uncensored](https://huggingface.co/jarradh/llama2_70b_chat_uncensored).
42
 
43
+ ### Important note regarding GGML files.
44
+
45
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
46
+
47
+ Please use the GGUF models instead.
48
+
49
+ ### About GGML
50
+
51
+ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
52
  * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
53
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
54
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
 
59
  ## Repositories available
60
 
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGUF)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML)
64
  * [Jarrad Hope's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jarradh/llama2_70b_chat_uncensored)
65
 
66
  ## Prompt template: Human-Response
 
70
  {prompt}
71
 
72
  ### RESPONSE:
73
+
74
  ```
75
 
76
  <!-- compatibility_ggml start -->
77
  ## Compatibility
78
 
79
+ ### Works with llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) until August 21st, 2023
80
+
81
+ Will not work with `llama.cpp` after commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa).
82
+
83
+ For compatibility with latest llama.cpp, please use GGUF files instead.
84
 
85
  Or one of the other tools and libraries listed above.
86
 
 
109
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
110
  | ---- | ---- | ---- | ---- | ---- | ----- |
111
  | [llama2_70b_chat_uncensored.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q2_K.bin) | q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
 
 
112
  | [llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
113
+ | [llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
114
+ | [llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
115
  | [llama2_70b_chat_uncensored.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. |
 
 
116
  | [llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
117
+ | [llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
118
+ | [llama2_70b_chat_uncensored.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
119
  | [llama2_70b_chat_uncensored.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
 
120
  | [llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
121
+ | [llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML/blob/main/llama2_70b_chat_uncensored.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
122
 
123
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
 
125
  ## How to run in `llama.cpp`
126
 
127
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
128
+
129
+ For compatibility with latest llama.cpp, please use GGUF files instead.
130
+
131
  I use the following command line; adjust for your tastes and needs:
132
 
133
  ```
134
+ ./main -t 10 -ngl 40 -gqa 8 -m llama2_70b_chat_uncensored.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\n{prompt}\n\n### RESPONSE:"
135
  ```
136
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
137
 
138
+ Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
139
+
140
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
141
 
142
  Remember the `-gqa 8` argument, required for Llama 70B models.
143
 
144
+ Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
145
+
146
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
147
 
148
  ## How to run in `text-generation-webui`
149
 
150
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
151
 
152
  <!-- footer start -->
153
+ <!-- 200823 -->
154
  ## Discord
155
 
156
  For further support, and discussions on these models and AI in general, join us at:
 
170
  * Patreon: https://patreon.com/TheBlokeAI
171
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
172
 
173
+ **Special thanks to**: Aemon Algiz.
174
 
175
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
176
 
177
 
178
  Thank you to all my generous patrons and donaters!
179
 
180
+ And thank you again to a16z for their generous grant.
181
+
182
  <!-- footer end -->
183
 
184
  # Original model card: Jarrad Hope's Llama2 70B Chat Uncensored
 
188
  Fine-tuned [Llama-2 70B](https://huggingface.co/TheBloke/Llama-2-70B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
189
  [QLoRA](https://arxiv.org/abs/2305.14314) was used for fine-tuning. The model was trained for three epochs on a single NVIDIA A100 80GB GPU instance, taking ~1 week to train.
190
 
191
+ Please note that LLama 2 Base model has its inherit biases.
192
+ Uncensored refers to the [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered) dataset.
193
+
194
  Special thanks to [George Sung](https://huggingface.co/georgesung) for creating [llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored), and to [Eric Hartford](https://huggingface.co/ehartford/) for creating [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
195
 
196
  The version here is the fp16 HuggingFace model.
 
200
  500gb of RAM/Swap was required to merge the model.
201
 
202
  ## GGML & GPTQ versions
203
+ Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
204
+ * https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GGML
205
+ * https://huggingface.co/TheBloke/llama2_70b_chat_uncensored-GPTQ
206
 
207
  # Prompt style
208
  The model was trained with the following prompt style: