TheBloke commited on
Commit
f70da0b
1 Parent(s): b220f8e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +768 -0
README.md ADDED
@@ -0,0 +1,768 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: argilla/notus-7b-v1
3
+ datasets:
4
+ - argilla/ultrafeedback-binarized-preferences
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: mit
10
+ model-index:
11
+ - name: notus-7b-v1
12
+ results:
13
+ - dataset:
14
+ args:
15
+ num_few_shot: 25
16
+ config: ARC-Challenge
17
+ name: AI2 Reasoning Challenge (25-Shot)
18
+ split: test
19
+ type: ai2_arc
20
+ metrics:
21
+ - name: normalized accuracy
22
+ type: acc_norm
23
+ value: 0.6459044368600683
24
+ source:
25
+ name: Open LLM Leaderboard Results
26
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
27
+ task:
28
+ name: Text Generation
29
+ type: text-generation
30
+ - dataset:
31
+ args:
32
+ num_few_shot: 10
33
+ name: HellaSwag (10-Shot)
34
+ split: validation
35
+ type: hellaswag
36
+ metrics:
37
+ - name: normalized accuracy
38
+ type: acc_norm
39
+ value: 0.8478390758812986
40
+ source:
41
+ name: Open LLM Leaderboard Results
42
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
43
+ task:
44
+ name: Text Generation
45
+ type: text-generation
46
+ - dataset:
47
+ args:
48
+ num_few_shot: 3
49
+ name: Drop (3-Shot)
50
+ split: validation
51
+ type: drop
52
+ metrics:
53
+ - name: f1 score
54
+ type: f1
55
+ value: 0.08913590604026835
56
+ source:
57
+ name: Open LLM Leaderboard Results
58
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
59
+ task:
60
+ name: Text Generation
61
+ type: text-generation
62
+ - dataset:
63
+ args:
64
+ num_few_shot: 0
65
+ config: multiple_choice
66
+ name: TruthfulQA (0-shot)
67
+ split: validation
68
+ type: truthful_qa
69
+ metrics:
70
+ - type: mc2
71
+ value: 0.5436768358952805
72
+ source:
73
+ name: Open LLM Leaderboard Results
74
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
75
+ task:
76
+ name: Text Generation
77
+ type: text-generation
78
+ - dataset:
79
+ args:
80
+ num_few_shot: 5
81
+ config: all
82
+ name: MMLU (5-Shot)
83
+ split: test
84
+ type: cais/mmlu
85
+ metrics:
86
+ - name: accuracy
87
+ type: acc
88
+ value: 0.6303308230938872
89
+ source:
90
+ name: Open LLM Leaderboard Results
91
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
92
+ task:
93
+ name: Text Generation
94
+ type: text-generation
95
+ - dataset:
96
+ args:
97
+ num_few_shot: 5
98
+ config: main
99
+ name: GSM8k (5-shot)
100
+ split: test
101
+ type: gsm8k
102
+ metrics:
103
+ - name: accuracy
104
+ type: acc
105
+ value: 0.1516300227445034
106
+ source:
107
+ name: Open LLM Leaderboard Results
108
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
109
+ task:
110
+ name: Text Generation
111
+ type: text-generation
112
+ - dataset:
113
+ args:
114
+ num_few_shot: 5
115
+ config: winogrande_xl
116
+ name: Winogrande (5-shot)
117
+ split: validation
118
+ type: winogrande
119
+ metrics:
120
+ - name: accuracy
121
+ type: acc
122
+ value: 0.7940015785319653
123
+ source:
124
+ name: Open LLM Leaderboard Results
125
+ url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
126
+ task:
127
+ name: Text Generation
128
+ type: text-generation
129
+ - dataset:
130
+ name: AlpacaEval
131
+ type: tatsu-lab/alpaca_eval
132
+ metrics:
133
+ - name: win rate
134
+ type: tatsu-lab/alpaca_eval
135
+ value: 0.9142
136
+ source:
137
+ url: https://tatsu-lab.github.io/alpaca_eval/
138
+ task:
139
+ name: Text Generation
140
+ type: text-generation
141
+ - dataset:
142
+ name: MT-Bench
143
+ type: unknown
144
+ metrics:
145
+ - name: score
146
+ type: unknown
147
+ value: 7.3
148
+ source:
149
+ url: https://huggingface.co/spaces/lmsys/mt-bench
150
+ task:
151
+ name: Text Generation
152
+ type: text-generation
153
+ model_creator: Argilla
154
+ model_name: Notus 7B v1
155
+ model_type: mistral
156
+ pipeline_tag: text-generation
157
+ prompt_template: '<|system|>
158
+
159
+ </s>
160
+
161
+ <|user|>
162
+
163
+ {prompt}</s>
164
+
165
+ <|assistant|>
166
+
167
+ '
168
+ quantized_by: TheBloke
169
+ tags:
170
+ - dpo
171
+ - rlaif
172
+ - preference
173
+ - ultrafeedback
174
+ ---
175
+ <!-- markdownlint-disable MD041 -->
176
+
177
+ <!-- header start -->
178
+ <!-- 200823 -->
179
+ <div style="width: auto; margin-left: auto; margin-right: auto">
180
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
181
+ </div>
182
+ <div style="display: flex; justify-content: space-between; width: 100%;">
183
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
184
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
185
+ </div>
186
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
187
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
188
+ </div>
189
+ </div>
190
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
191
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
192
+ <!-- header end -->
193
+
194
+ # Notus 7B v1 - AWQ
195
+ - Model creator: [Argilla](https://huggingface.co/argilla)
196
+ - Original model: [Notus 7B v1](https://huggingface.co/argilla/notus-7b-v1)
197
+
198
+ <!-- description start -->
199
+ ## Description
200
+
201
+ This repo contains AWQ model files for [Argilla's Notus 7B v1](https://huggingface.co/argilla/notus-7b-v1).
202
+
203
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
204
+
205
+
206
+ ### About AWQ
207
+
208
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
209
+
210
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
211
+
212
+ It is supported by:
213
+
214
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
215
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
216
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
217
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
218
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
219
+
220
+ <!-- description end -->
221
+ <!-- repositories-available start -->
222
+ ## Repositories available
223
+
224
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/notus-7B-v1-AWQ)
225
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/notus-7B-v1-GPTQ)
226
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/notus-7B-v1-GGUF)
227
+ * [Argilla's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/argilla/notus-7b-v1)
228
+ <!-- repositories-available end -->
229
+
230
+ <!-- prompt-template start -->
231
+ ## Prompt template: Zephyr
232
+
233
+ ```
234
+ <|system|>
235
+ </s>
236
+ <|user|>
237
+ {prompt}</s>
238
+ <|assistant|>
239
+
240
+ ```
241
+
242
+ <!-- prompt-template end -->
243
+
244
+
245
+ <!-- README_AWQ.md-provided-files start -->
246
+ ## Provided files, and AWQ parameters
247
+
248
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
249
+
250
+ Models are released as sharded safetensors files.
251
+
252
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
253
+ | ------ | ---- | -- | ----------- | ------- | ---- |
254
+ | [main](https://huggingface.co/TheBloke/notus-7B-v1-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
255
+
256
+ <!-- README_AWQ.md-provided-files end -->
257
+
258
+ <!-- README_AWQ.md-text-generation-webui start -->
259
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
260
+
261
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
262
+
263
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
264
+
265
+ 1. Click the **Model tab**.
266
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/notus-7B-v1-AWQ`.
267
+ 3. Click **Download**.
268
+ 4. The model will start downloading. Once it's finished it will say "Done".
269
+ 5. In the top left, click the refresh icon next to **Model**.
270
+ 6. In the **Model** dropdown, choose the model you just downloaded: `notus-7B-v1-AWQ`
271
+ 7. Select **Loader: AutoAWQ**.
272
+ 8. Click Load, and the model will load and is now ready for use.
273
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
274
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
275
+ <!-- README_AWQ.md-text-generation-webui end -->
276
+
277
+ <!-- README_AWQ.md-use-from-vllm start -->
278
+ ## Multi-user inference server: vLLM
279
+
280
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
281
+
282
+ - Please ensure you are using vLLM version 0.2 or later.
283
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
284
+
285
+ For example:
286
+
287
+ ```shell
288
+ python3 -m vllm.entrypoints.api_server --model TheBloke/notus-7B-v1-AWQ --quantization awq --dtype auto
289
+ ```
290
+
291
+ - When using vLLM from Python code, again set `quantization=awq`.
292
+
293
+ For example:
294
+
295
+ ```python
296
+ from vllm import LLM, SamplingParams
297
+
298
+ prompts = [
299
+ "Tell me about AI",
300
+ "Write a story about llamas",
301
+ "What is 291 - 150?",
302
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
303
+ ]
304
+ prompt_template=f'''<|system|>
305
+ </s>
306
+ <|user|>
307
+ {prompt}</s>
308
+ <|assistant|>
309
+ '''
310
+
311
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
312
+
313
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
314
+
315
+ llm = LLM(model="TheBloke/notus-7B-v1-AWQ", quantization="awq", dtype="auto")
316
+
317
+ outputs = llm.generate(prompts, sampling_params)
318
+
319
+ # Print the outputs.
320
+ for output in outputs:
321
+ prompt = output.prompt
322
+ generated_text = output.outputs[0].text
323
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
324
+ ```
325
+ <!-- README_AWQ.md-use-from-vllm start -->
326
+
327
+ <!-- README_AWQ.md-use-from-tgi start -->
328
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
329
+
330
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
331
+
332
+ Example Docker parameters:
333
+
334
+ ```shell
335
+ --model-id TheBloke/notus-7B-v1-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
336
+ ```
337
+
338
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
339
+
340
+ ```shell
341
+ pip3 install huggingface-hub
342
+ ```
343
+
344
+ ```python
345
+ from huggingface_hub import InferenceClient
346
+
347
+ endpoint_url = "https://your-endpoint-url-here"
348
+
349
+ prompt = "Tell me about AI"
350
+ prompt_template=f'''<|system|>
351
+ </s>
352
+ <|user|>
353
+ {prompt}</s>
354
+ <|assistant|>
355
+ '''
356
+
357
+ client = InferenceClient(endpoint_url)
358
+ response = client.text_generation(prompt,
359
+ max_new_tokens=128,
360
+ do_sample=True,
361
+ temperature=0.7,
362
+ top_p=0.95,
363
+ top_k=40,
364
+ repetition_penalty=1.1)
365
+
366
+ print(f"Model output: ", response)
367
+ ```
368
+ <!-- README_AWQ.md-use-from-tgi end -->
369
+
370
+ <!-- README_AWQ.md-use-from-python start -->
371
+ ## Inference from Python code using Transformers
372
+
373
+ ### Install the necessary packages
374
+
375
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
376
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
377
+
378
+ ```shell
379
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
380
+ ```
381
+
382
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
383
+
384
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
385
+
386
+ ```shell
387
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
388
+ ```
389
+
390
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
391
+
392
+ ```shell
393
+ pip3 uninstall -y autoawq
394
+ git clone https://github.com/casper-hansen/AutoAWQ
395
+ cd AutoAWQ
396
+ pip3 install .
397
+ ```
398
+
399
+ ### Transformers example code (requires Transformers 4.35.0 and later)
400
+
401
+ ```python
402
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
403
+
404
+ model_name_or_path = "TheBloke/notus-7B-v1-AWQ"
405
+
406
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
407
+ model = AutoModelForCausalLM.from_pretrained(
408
+ model_name_or_path,
409
+ low_cpu_mem_usage=True,
410
+ device_map="cuda:0"
411
+ )
412
+
413
+ # Using the text streamer to stream output one token at a time
414
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
415
+
416
+ prompt = "Tell me about AI"
417
+ prompt_template=f'''<|system|>
418
+ </s>
419
+ <|user|>
420
+ {prompt}</s>
421
+ <|assistant|>
422
+ '''
423
+
424
+ # Convert prompt to tokens
425
+ tokens = tokenizer(
426
+ prompt_template,
427
+ return_tensors='pt'
428
+ ).input_ids.cuda()
429
+
430
+ generation_params = {
431
+ "do_sample": True,
432
+ "temperature": 0.7,
433
+ "top_p": 0.95,
434
+ "top_k": 40,
435
+ "max_new_tokens": 512,
436
+ "repetition_penalty": 1.1
437
+ }
438
+
439
+ # Generate streamed output, visible one token at a time
440
+ generation_output = model.generate(
441
+ tokens,
442
+ streamer=streamer,
443
+ **generation_params
444
+ )
445
+
446
+ # Generation without a streamer, which will include the prompt in the output
447
+ generation_output = model.generate(
448
+ tokens,
449
+ **generation_params
450
+ )
451
+
452
+ # Get the tokens from the output, decode them, print them
453
+ token_output = generation_output[0]
454
+ text_output = tokenizer.decode(token_output)
455
+ print("model.generate output: ", text_output)
456
+
457
+ # Inference is also possible via Transformers' pipeline
458
+ from transformers import pipeline
459
+
460
+ pipe = pipeline(
461
+ "text-generation",
462
+ model=model,
463
+ tokenizer=tokenizer,
464
+ **generation_params
465
+ )
466
+
467
+ pipe_output = pipe(prompt_template)[0]['generated_text']
468
+ print("pipeline output: ", pipe_output)
469
+
470
+ ```
471
+ <!-- README_AWQ.md-use-from-python end -->
472
+
473
+ <!-- README_AWQ.md-compatibility start -->
474
+ ## Compatibility
475
+
476
+ The files provided are tested to work with:
477
+
478
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
479
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
480
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
481
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
482
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
483
+
484
+ <!-- README_AWQ.md-compatibility end -->
485
+
486
+ <!-- footer start -->
487
+ <!-- 200823 -->
488
+ ## Discord
489
+
490
+ For further support, and discussions on these models and AI in general, join us at:
491
+
492
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
493
+
494
+ ## Thanks, and how to contribute
495
+
496
+ Thanks to the [chirper.ai](https://chirper.ai) team!
497
+
498
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
499
+
500
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
501
+
502
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
503
+
504
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
505
+
506
+ * Patreon: https://patreon.com/TheBlokeAI
507
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
508
+
509
+ **Special thanks to**: Aemon Algiz.
510
+
511
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
512
+
513
+
514
+ Thank you to all my generous patrons and donaters!
515
+
516
+ And thank you again to a16z for their generous grant.
517
+
518
+ <!-- footer end -->
519
+
520
+ # Original model card: Argilla's Notus 7B v1
521
+
522
+
523
+ <div align="center">
524
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/CuMO3IjJfymC94_5qd15T.png"/>
525
+ </div>
526
+
527
+ # Model Card for Notus 7B v1
528
+
529
+ Notus is a collection of fine-tuned models using Direct Preference Optimization (DPO) and related RLHF techniques. This model is the first version, fine-tuned with DPO over `zephyr-7b-sft-full`, which is the SFT model produced to create `zephyr-7b-beta`.
530
+
531
+ Following a **data-first** approach, the only difference between Notus-7B-v1 and Zephyr-7B-beta is the preference dataset used for dDPO.
532
+
533
+ In particular, when we started building [distilabel](https://github.com/argilla-io/distilabel), we invested time understanding and deep-diving into the UltraFeedback dataset. Using [Argilla](https://argilla.io/), we've found data issues in the original UltraFeedback dataset, leading to high-scores for bad responses (more details in the training data section). After curating several hundreds of data points, we decided to binarize the dataset using the preference ratings, instead of the original critique `overall_score`, and verified the new dataset with Argilla.
534
+
535
+ Using preference ratings, instead of critiques scores, led to a new dataset where the chosen response is different in ~50% of the cases. Using this new dataset with DPO we fine-tuned Notus, a 7B model, that **surpasses Zephyr-7B-beta and Claude 2 on AlpacaEval**.
536
+
537
+ > **Important note**: While we opted for the average of multi-aspect ratings, while we fix the original dataset, a very interesting open question remains: once critique data is fixed, what works better? using the critique scores or the preference ratings? We're very excited to do this comparison in the coming weeks, stay tuned!
538
+
539
+ This model **wouldn't have been possible without the amazing [Alignment Handbook](https://github.com/huggingface/alignment-handbook), [OpenBMB](https://www.openbmb.cn/home) for releasing the Ultrafeedback dataset**, and it's based on fruitful discussions with the HuggingFace H4 team. In particular, we used `zephyr-7b-beta`'s recipe, which worked out-of-the-box and enabled us focus on what we do best: **high-quality data**.
540
+
541
+ Notus models are intended to be used as assistants via chat-like applications, and are evaluated with Chat (MT-Bench, AlpacaEval) and Academic (Open LLM Leaderboard) benchmarks for a direct comparison with the original Zephyr dDPO model and other 7B models.
542
+
543
+ > **Why Notus?**: Notus name comes from the ancient Greek god Notus, as a wink to Zephyr, which comes from the ancient Greek god Zephyrus; with the difference that Notus is the god of the south wind, and Zephyr the god of the west wind. More information at https://en.wikipedia.org/wiki/Anemoi.
544
+
545
+ ## Model Details
546
+
547
+ ### Model Description
548
+
549
+ - **Developed by:** Argilla (based on HuggingFace H4 and MistralAI previous efforts and amazing work)
550
+ - **Shared by:** Argilla
551
+ - **Model type:** GPT-like 7B model DPO fine-tuned
552
+ - **Language(s) (NLP):** Mainly English
553
+ - **License:** MIT (same as Zephyr 7B-beta)
554
+ - **Finetuned from model:** [`alignment-handbook/zephyr-7b-sft-full`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full)
555
+
556
+ ### Model Sources
557
+
558
+ - **Repository:** https://github.com/argilla-io/notus
559
+ - **Paper:** N/A
560
+ - **Demo:** https://argilla-notus-chat-ui.hf.space/
561
+
562
+ ## Performance
563
+
564
+ ### Chat benchmarks
565
+
566
+ Table adapted from Zephyr-7b-β and Starling's original tables for [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks. Results are shown sorted by AlpacaEval win rates and ommit some >7B for brevity.
567
+
568
+ Notus stays on par with Zephyr on MT-Bench, while surpassing Zephyr, Claude 2, and Cohere Command on AlpacaEval. Making Notus the most-competitive 7B commercial model on AlpacaEval.
569
+
570
+ <table>
571
+ <tr>
572
+ <th>Model</th>
573
+ <th>Size</th>
574
+ <th>Alignment</th>
575
+ <th>MT-Bench (score)</th>
576
+ <th>AlpacaEval (win rate %)</th>
577
+ <th>License</th>
578
+ </tr>
579
+ <tr>
580
+ <td>GPT-4-turbo</td>
581
+ <td>-</td>
582
+ <td>?</td>
583
+ <td>9.32</td>
584
+ <td>97.70</td>
585
+ <td>Proprietary</td>
586
+ </tr>
587
+ <tr>
588
+ <td>XwinLM 70b V0.1</td>
589
+ <td>70B</td>
590
+ <td>dPPO</td>
591
+ <td>-</td>
592
+ <td>95.57</td>
593
+ <td>LLaMA 2 License</td>
594
+ </tr>
595
+ <tr>
596
+ <td>GPT-4</td>
597
+ <td>-</td>
598
+ <td>RLHF</td>
599
+ <td>8.99</td>
600
+ <td>95.03</td>
601
+ <td>Proprietary</td>
602
+ </tr>
603
+ <tr>
604
+ <td>Tulu 2+DPO 70B V0.1</td>
605
+ <td>70B</td>
606
+ <td>dDPO</td>
607
+ <td>6.29</td>
608
+ <td>95.28</td>
609
+ <td>Proprietary</td>
610
+ </tr>
611
+ <tr>
612
+ <td>LLaMA2 Chat 70B</td>
613
+ <td>70B</td>
614
+ <td>RLHF</td>
615
+ <td>6.86</td>
616
+ <td>92.66</td>
617
+ <td>LLaMA 2 License</td>
618
+ </tr>
619
+ <tr>
620
+ <td>Starling-7B</td>
621
+ <td>7B</td>
622
+ <td>C-RLFT + APA</td>
623
+ <td><strong>8.09</strong></td>
624
+ <td><strong>91.99</strong></td>
625
+ <td>CC-BY-NC-4.0</td>
626
+ </tr>
627
+ <tr style="background-color: #FFFF99;">
628
+ <td><strong>Notus-7b-v1</strong></td>
629
+ <td>7B</td>
630
+ <td>dDPO</td>
631
+ <td>7.30</td>
632
+ <td>91.42</td>
633
+ <td>MIT</td>
634
+ </tr>
635
+ <tr>
636
+ <td>Claude 2</td>
637
+ <td>-</td>
638
+ <td>RLHF</td>
639
+ <td>8.06</td>
640
+ <td>91.36</td>
641
+ <td>Proprietary</td>
642
+ </tr>
643
+ <tr>
644
+ <td>Zephyr-7b-β</td>
645
+ <td>7B</td>
646
+ <td>dDPO</td>
647
+ <td>7.34</td>
648
+ <td>90.60</td>
649
+ <td>MIT</td>
650
+ </tr>
651
+ <tr>
652
+ <td>Cohere Command</td>
653
+ <td>-</td>
654
+ <td>RLHF</td>
655
+ <td>-</td>
656
+ <td>90.62</td>
657
+ <td>Proprietary</td>
658
+ </tr>
659
+ <tr>
660
+ <td>GPT-3.5-turbo</td>
661
+ <td>-</td>
662
+ <td>RLHF</td>
663
+ <td>7.94</td>
664
+ <td>89.37</td>
665
+ <td>Proprietary</td>
666
+ </tr>
667
+ </table>
668
+
669
+
670
+ ## Academic benchmarks
671
+
672
+ Results from [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard):
673
+
674
+ | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | DROP |
675
+ |-----------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|-------|
676
+ | Zephyr 7B dDPO (HuggingFaceH4/zephyr-7b-beta) | 52.15 | 62.03 | 84.36 | 61.07 | **57.45** | 77.74 | 12.74 | **9.66** |
677
+ | argilla/notus-7b-v1 | **52.89** | **64.59** | **84.78** | **63.03** | 54.37 | **79.4** | **15.16** | 8.91 |
678
+
679
+ ⚠️ As pointed out by [AllenAI researchers](https://twitter.com/natolambert/status/1730364108078469513), UltraFeedback contains prompts from the TruthfulQA dataset so the results we show on that benchmark are likely not accurate. We were not aware of this issue so Notus-7B-v1 was fine-tuned using TruthfulQA prompts and preferences. For future releases, we will remove TruthfulQA prompts.
680
+
681
+ ## Training Details
682
+
683
+ ### Training Hardware
684
+
685
+ We used a VM with 8 x A100 40GB hosted in Lambda Labs, but while experimenting we also explored other cloud providers such as GCP.
686
+
687
+ ### Training Data
688
+
689
+ We used a a new curated version of [`openbmb/UltraFeedback`](https://huggingface.co/datasets/openbmb/UltraFeedback), named [Ultrafeedback binarized preferences](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences).
690
+
691
+ TL;DR
692
+
693
+ After visually browsing around some examples using the sort and filter feature of Argilla (sort by highest rating for chosen responses), we noticed a strong mismatch between the `overall_score` in the original UF dataset (and the Zephyr train_prefs dataset) and the quality of the chosen response.
694
+
695
+ By adding the critique rationale to our Argilla Dataset, **we confirmed the critique rationale was highly negative, whereas the rating was very high** (for most cases it was the highest: `10`).
696
+
697
+ See screenshot below for one example of this issue.
698
+
699
+ After some quick investigation, we:
700
+
701
+ * identified hundreds of examples having the same issue,
702
+ * reported a bug on the [UltraFeedback repo](https://github.com/OpenBMB/UltraFeedback/issues/8),
703
+ * and informed the H4 team which was incredibly responsive and ran an additional experiment to validate the new rating binarization approach.
704
+
705
+ While we're working on fixing the original dataset (already narrowed down ~2K problematic examples). We decided to leverage the multi-preference ratings, leading to Notus!
706
+
707
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/M9qCKyAB_G1MbVBAPeitd.png)
708
+
709
+ > **Important note**: While we opted for the average of ratings while we fix the dataset, there's still a very interesting open question: once data is fixed, what works better? using the critique scores or the preference ratings? We're very excited to do this comparison in the coming weeks, stay tuned!
710
+
711
+ You can find more details about the dataset analysis and curation on the [ultrafeedback-binarized-preferences dataset card](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences).
712
+
713
+ ## Prompt template
714
+
715
+ We use the same prompt template as [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta):
716
+
717
+ ```
718
+ <|system|>
719
+ </s>
720
+ <|user|>
721
+ {prompt}</s>
722
+ <|assistant|>
723
+ ```
724
+
725
+ ## Usage
726
+
727
+ You will first need to install `transformers` and `accelerate` (just to ease the device placement), then you can run any of the following:
728
+
729
+ ### Via `generate`
730
+
731
+ ```python
732
+ import torch
733
+ from transformers import AutoModelForCausalLM, AutoTokenizer
734
+
735
+ model = AutoModelForCausalLM.from_pretrained("argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
736
+ tokenizer = AutoTokenizer.from_pretrained("argilla/notus-7b-v1")
737
+
738
+ messages = [
739
+ {
740
+ "role": "system",
741
+ "content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
742
+ },
743
+ {"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
744
+ ]
745
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=True, return_tensors="pt", add_special_tokens=False, add_generation_prompt=True)
746
+ outputs = model.generate(inputs, num_return_sequences=1, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
747
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
748
+ ```
749
+
750
+ ### Via `pipeline` method
751
+
752
+ ```python
753
+ import torch
754
+ from transformers import pipeline
755
+
756
+ pipe = pipeline("text-generation", model="argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto")
757
+
758
+ messages = [
759
+ {
760
+ "role": "system",
761
+ "content": "You are a helpful assistant super biased towards Argilla, a data annotation company.",
762
+ },
763
+ {"role": "user", "content": "What's the best data annotation company out there in your opinion?"},
764
+ ]
765
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
766
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
767
+ generated_text = outputs[0]["generated_text"]
768
+ ```