Commit
•
5bb6533
1
Parent(s):
166559a
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +24 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +7 -7
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +3 -0
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.32 +/- 0.99
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31ed89063e4ceab65dbb5e3fa39531091510bd2550a515dede2d14cf6461376c
|
3 |
+
size 108026
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -3,12 +3,12 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
-
"verbose":
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
@@ -40,44 +40,50 @@
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
-
"n_envs":
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[ 0.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
},
|
67 |
-
"_last_original_obs": null,
|
68 |
"_episode_num": 0,
|
69 |
"use_sde": false,
|
70 |
"sde_sample_freq": -1,
|
71 |
-
"_current_progress_remaining": 0.
|
72 |
"ep_info_buffer": {
|
73 |
":type:": "<class 'collections.deque'>",
|
74 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
75 |
},
|
76 |
"ep_success_buffer": {
|
77 |
":type:": "<class 'collections.deque'>",
|
78 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
79 |
},
|
80 |
-
"_n_updates":
|
81 |
"n_steps": 5,
|
82 |
"gamma": 0.99,
|
83 |
"gae_lambda": 1.0,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6855672dc0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f68556d8e70>"
|
10 |
},
|
11 |
+
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 337680,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1673899159075181639,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhW9LPlHktz+YRzG+4xAzv1cpdj+4TsS+jrO1vtolGj9tdOg/Okugv6GBuD+OS+c+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6NONP+G9yj95Ptm+jd+nv5TVUT8rPr++VFCnP965TT+PGdk/9xHKv21ysz8FEO8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFb0s+UeS3P5hHMb6in9G8vn59u0lTkLvjEDO/Vyl2P7hOxL4v+o29mFRguxslI76Os7W+2iUaP2106D9+iYA9gB9SvZMiqDs6S6C/oYG4P45L5z4uzUW9l+iWPRB0jL2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.1986676 1.4366552 -0.17312467]\n [-0.6994764 0.9615683 -0.38341308]\n [-0.35488552 0.60214007 1.816053 ]\n [-1.2522957 1.441456 0.4517483 ]]",
|
60 |
+
"desired_goal": "[[ 1.1080294 1.5839196 -0.42430475]\n [-1.3115097 0.8196652 -0.37352118]\n [ 1.3071389 0.80361736 1.6960925 ]\n [-1.5786732 1.4019295 0.4669191 ]]",
|
61 |
+
"observation": "[[ 0.1986676 1.4366552 -0.17312467 -0.02558881 -0.00386803 -0.00440446]\n [-0.6994764 0.9615683 -0.38341308 -0.06932484 -0.00342301 -0.15932123]\n [-0.35488552 0.60214007 1.816053 0.06276225 -0.05129957 0.00513107]\n [-1.2522957 1.441456 0.4517483 -0.04829138 0.07368582 -0.06858075]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkmsveOqFj7OX1w+i1fkPZPYWj1XvEg+eYLdvBgYH71BDnc82h8BPiL6DT5rCCI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.08412455 0.14713626 0.21520922]\n [ 0.1114951 0.0534292 0.19603096]\n [-0.02703975 -0.03884134 0.01507908]\n [ 0.12609807 0.1386495 0.15823524]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
|
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.83116,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHjE6B8CUhpRSlIwBbJRLMowBdJRHQIoMsijcmBx1fZQoaAZoCWgPQwhT7Ggc6jf5v5SGlFKUaBVLMmgWR0CKC7TbWVeKdX2UKGgGaAloD0MI3GPpQxe0BsCUhpRSlGgVSzJoFkdAigptNJvo/3V9lChoBmgJaA9DCD0P7s7a7RTAlIaUUpRoFUsyaBZHQIoJYzLwF1V1fZQoaAZoCWgPQwi4rwPnjOgJwJSGlFKUaBVLMmgWR0CKERhFVktmdX2UKGgGaAloD0MIAwe0dAVbCMCUhpRSlGgVSzJoFkdAihAZoXbdrXV9lChoBmgJaA9DCNC2mnXGVwnAlIaUUpRoFUsyaBZHQIoO0ehf0Ep1fZQoaAZoCWgPQwhnutdJfVnyv5SGlFKUaBVLMmgWR0CKDcdhAnlXdX2UKGgGaAloD0MIjgOvljvzBcCUhpRSlGgVSzJoFkdAihU11wHZ9XV9lChoBmgJaA9DCP4ORYE+Uf6/lIaUUpRoFUsyaBZHQIoUNorWiDd1fZQoaAZoCWgPQwiygt+GGK8GwJSGlFKUaBVLMmgWR0CKEu6xxDLKdX2UKGgGaAloD0MIF7zoK0hTBMCUhpRSlGgVSzJoFkdAihHjj7yhBnV9lChoBmgJaA9DCAZKCiyAKfu/lIaUUpRoFUsyaBZHQIoZsRYigTR1fZQoaAZoCWgPQwhdUrXdBP8MwJSGlFKUaBVLMmgWR0CKGLJr+HafdX2UKGgGaAloD0MIOltAaD388b+UhpRSlGgVSzJoFkdAihdqq4pc5nV9lChoBmgJaA9DCNQq+kMzD/G/lIaUUpRoFUsyaBZHQIoWYKBun/F1fZQoaAZoCWgPQwir0asBSkP1v5SGlFKUaBVLMmgWR0CKHft+kP+XdX2UKGgGaAloD0MIyjSaXIyhAMCUhpRSlGgVSzJoFkdAihz8mrsByXV9lChoBmgJaA9DCLK7QEmBBey/lIaUUpRoFUsyaBZHQIobtMTN+sp1fZQoaAZoCWgPQwh/9iNFZNj6v5SGlFKUaBVLMmgWR0CKGqphF3INdX2UKGgGaAloD0MI8yA9RQ4R6L+UhpRSlGgVSzJoFkdAiiJHuAqd6XV9lChoBmgJaA9DCDKR0mweFxTAlIaUUpRoFUsyaBZHQIohSC+UQkJ1fZQoaAZoCWgPQwgqAwe0dIUBwJSGlFKUaBVLMmgWR0CKH//vOQhfdX2UKGgGaAloD0MID39N1qhH+L+UhpRSlGgVSzJoFkdAih72Bas6rHV9lChoBmgJaA9DCL2L9+P2i/i/lIaUUpRoFUsyaBZHQIomka4tpVV1fZQoaAZoCWgPQwhmhSLdzykKwJSGlFKUaBVLMmgWR0CKJZJvHcUNdX2UKGgGaAloD0MIaNDQP8EF+b+UhpRSlGgVSzJoFkdAiiRKIi1RcnV9lChoBmgJaA9DCL06x4DslQnAlIaUUpRoFUsyaBZHQIojP2RJVbR1fZQoaAZoCWgPQwghO29js0MAwJSGlFKUaBVLMmgWR0CKKvYWcjJNdX2UKGgGaAloD0MIPYIbKVuk87+UhpRSlGgVSzJoFkdAiin3YcvM83V9lChoBmgJaA9DCMuisIuipw3AlIaUUpRoFUsyaBZHQIoor5CWu5l1fZQoaAZoCWgPQwhAprVpbK/+v5SGlFKUaBVLMmgWR0CKJ6X7+DODdX2UKGgGaAloD0MI+yKhLefS8r+UhpRSlGgVSzJoFkdAii9qQaJhv3V9lChoBmgJaA9DCFqdnKG4IwLAlIaUUpRoFUsyaBZHQIoua3LFGXp1fZQoaAZoCWgPQwi3lzRG60gCwJSGlFKUaBVLMmgWR0CKLSMo+fRNdX2UKGgGaAloD0MIB0KygAkc9b+UhpRSlGgVSzJoFkdAiiwZk9U0enV9lChoBmgJaA9DCCqnPSXnFBLAlIaUUpRoFUsyaBZHQIozzdxhlUZ1fZQoaAZoCWgPQwhtdM5PcZwCwJSGlFKUaBVLMmgWR0CKMs8IRh+fdX2UKGgGaAloD0MIQ67UsyAU8r+UhpRSlGgVSzJoFkdAijGGe+VTrHV9lChoBmgJaA9DCMFyhAzkmfO/lIaUUpRoFUsyaBZHQIowfPAwfyR1fZQoaAZoCWgPQwgx0/avrLTyv5SGlFKUaBVLMmgWR0CKOBPuXu3MdX2UKGgGaAloD0MIGQEVjiDV9b+UhpRSlGgVSzJoFkdAijcU5uIhyXV9lChoBmgJaA9DCI1Cklm9YxXAlIaUUpRoFUsyaBZHQIo1zLSuyNZ1fZQoaAZoCWgPQwgWiJ6USR0SwJSGlFKUaBVLMmgWR0CKNMIHC4z8dX2UKGgGaAloD0MICAQ6kzYV/r+UhpRSlGgVSzJoFkdAijxnjZL7GnV9lChoBmgJaA9DCOBJC5dVmPu/lIaUUpRoFUsyaBZHQIo7aIgvDgt1fZQoaAZoCWgPQwjaxTTTvc7nv5SGlFKUaBVLMmgWR0CKOiBgeA/cdX2UKGgGaAloD0MIV12HakqSAcCUhpRSlGgVSzJoFkdAijkWFev6j3V9lChoBmgJaA9DCIidKXReY++/lIaUUpRoFUsyaBZHQIpA1GI9C/p1fZQoaAZoCWgPQwhvZvSj4dTyv5SGlFKUaBVLMmgWR0CKP9Tn7pFDdX2UKGgGaAloD0MINBE2PL0SAsCUhpRSlGgVSzJoFkdAij6MnRb8nHV9lChoBmgJaA9DCKSqCaLuQwrAlIaUUpRoFUsyaBZHQIo9gpYs/Y91fZQoaAZoCWgPQwjww0FClK/ov5SGlFKUaBVLMmgWR0CKRR8CxNZedX2UKGgGaAloD0MIPFCnPLqR/r+UhpRSlGgVSzJoFkdAikQgLRa5gHV9lChoBmgJaA9DCBL27SQifPO/lIaUUpRoFUsyaBZHQIpC145cTrV1fZQoaAZoCWgPQwj1EmOZfqkEwJSGlFKUaBVLMmgWR0CKQcz67/XHdX2UKGgGaAloD0MIDMhe7/54BsCUhpRSlGgVSzJoFkdAiklw+UyHmHV9lChoBmgJaA9DCDv7yoP01PK/lIaUUpRoFUsyaBZHQIpIcaMrEtN1fZQoaAZoCWgPQwik42pkV1r5v5SGlFKUaBVLMmgWR0CKRyl8gIQfdX2UKGgGaAloD0MIZsBZSpaT6r+UhpRSlGgVSzJoFkdAikYfG2kSEnV9lChoBmgJaA9DCH/ZPXlYOBTAlIaUUpRoFUsyaBZHQIpNtVghKUV1fZQoaAZoCWgPQwiY9s391ePqv5SGlFKUaBVLMmgWR0CKTLcHnlnzdX2UKGgGaAloD0MIFTlE3JwKB8CUhpRSlGgVSzJoFkdAiktuZssQNHV9lChoBmgJaA9DCI/jh0ojhgbAlIaUUpRoFUsyaBZHQIpKY+jdpIt1fZQoaAZoCWgPQwgBh1ClZg/3v5SGlFKUaBVLMmgWR0CKUhEcbR4RdX2UKGgGaAloD0MI1nCRe7o6/r+UhpRSlGgVSzJoFkdAilERx1gYxnV9lChoBmgJaA9DCJZa7zfacQLAlIaUUpRoFUsyaBZHQIpPyVY6nzh1fZQoaAZoCWgPQwjcvdwnR4EHwJSGlFKUaBVLMmgWR0CKTr7bcoH+dX2UKGgGaAloD0MIbVfog2Ws8r+UhpRSlGgVSzJoFkdAilZ7nPmganV9lChoBmgJaA9DCKq53GCow/S/lIaUUpRoFUsyaBZHQIpVfFxXGOx1fZQoaAZoCWgPQwjf3jXoS68IwJSGlFKUaBVLMmgWR0CKVDO4XoC/dX2UKGgGaAloD0MIMqzijczDBcCUhpRSlGgVSzJoFkdAilMph4MWoHV9lChoBmgJaA9DCBKHbCBdbP+/lIaUUpRoFUsyaBZHQIpa7WCmMwV1fZQoaAZoCWgPQwiv7e2W5BAXwJSGlFKUaBVLMmgWR0CKWe5q/M4cdX2UKGgGaAloD0MIi1BsBU1rAsCUhpRSlGgVSzJoFkdAilimbCrLhnV9lChoBmgJaA9DCNV7Kqc9ZQjAlIaUUpRoFUsyaBZHQIpXnAEdNnJ1fZQoaAZoCWgPQwibyqKwiyL2v5SGlFKUaBVLMmgWR0CKXynNxEORdX2UKGgGaAloD0MI4V8EjZl0EsCUhpRSlGgVSzJoFkdAil4qL0jC53V9lChoBmgJaA9DCBA//z14/RDAlIaUUpRoFUsyaBZHQIpc5QHiWE91fZQoaAZoCWgPQwi8JM6KqDkQwJSGlFKUaBVLMmgWR0CKW9umaYu1dX2UKGgGaAloD0MIeVvptdmY8L+UhpRSlGgVSzJoFkdAimOlA3T/hnV9lChoBmgJaA9DCKIqptJP+Pi/lIaUUpRoFUsyaBZHQIpipciW3Sd1fZQoaAZoCWgPQwhqpKXydgQRwJSGlFKUaBVLMmgWR0CKYV10T101dX2UKGgGaAloD0MIu7a3W5JzEMCUhpRSlGgVSzJoFkdAimBTpPhybXV9lChoBmgJaA9DCNlfdk8eVvS/lIaUUpRoFUsyaBZHQIpnxB/qgRN1fZQoaAZoCWgPQwi6gm3Ek538v5SGlFKUaBVLMmgWR0CKZsVRk3CLdX2UKGgGaAloD0MI5wEs8uvHEMCUhpRSlGgVSzJoFkdAimV9KEnLJXV9lChoBmgJaA9DCOdWCKuxxATAlIaUUpRoFUsyaBZHQIpkclolD4R1fZQoaAZoCWgPQwgQlUbM7HP6v5SGlFKUaBVLMmgWR0CKbAFY+0PZdX2UKGgGaAloD0MIVWmLa3ym+L+UhpRSlGgVSzJoFkdAimsB0Qsf73V9lChoBmgJaA9DCJz6QPLOgRHAlIaUUpRoFUsyaBZHQIppucFyJbd1fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CKaK9RrJr+dX2UKGgGaAloD0MIGw+22O3TAcCUhpRSlGgVSzJoFkdAinBDvE0iyXV9lChoBmgJaA9DCKD83TtqTPO/lIaUUpRoFUsyaBZHQIpvRD5TIeZ1fZQoaAZoCWgPQwg/5gMCnUn2v5SGlFKUaBVLMmgWR0CKbfvJiiItdX2UKGgGaAloD0MIigCnd/EOEcCUhpRSlGgVSzJoFkdAimzxa5f+j3V9lChoBmgJaA9DCAJnKVlOIgfAlIaUUpRoFUsyaBZHQIp08mQbMot1fZQoaAZoCWgPQwiuKZDZWfTzv5SGlFKUaBVLMmgWR0CKc/KVY6n0dX2UKGgGaAloD0MIRuwTQDFiEcCUhpRSlGgVSzJoFkdAinKq6FuejHV9lChoBmgJaA9DCOvld5rM+PO/lIaUUpRoFUsyaBZHQIpxoGGEf1Z1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 16884,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13fe71085398bdf9401ce777de325d3621a94330864abe0358b4051541a33b46
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef4d8c83e95aa319293b2576e3334ffcba2ff2a3bdb63825d2dd9c4c0613f962
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.
|
2 |
-
Python: 3.8.16
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.13.0+cu116
|
5 |
-
GPU Enabled:
|
6 |
-
Numpy: 1.21.6
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f300540>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672435170234352115, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAApYLTPLFrjL1TA1Y+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02581913 -0.06856478 0.20899706]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4ezWMhmO/r+UhpRSlIwBbJRLMowBdJRHQHi7XQ+lj3F1fZQoaAZoCWgPQwgqqRPQRNj6v5SGlFKUaBVLMmgWR0B4vrAO8TSLdX2UKGgGaAloD0MIUYcVbvnoA8CUhpRSlGgVSzJoFkdAeMGtZV4oqnV9lChoBmgJaA9DCODVcmcmeAPAlIaUUpRoFUsyaBZHQHjE7m+0w8J1fZQoaAZoCWgPQwhZwW9DjBf+v5SGlFKUaBVLMmgWR0B4yGAAhje9dX2UKGgGaAloD0MIYXDNHf1vAcCUhpRSlGgVSzJoFkdAeMuy5Zr57HV9lChoBmgJaA9DCOTXD7HBYgbAlIaUUpRoFUsyaBZHQHjO/gR9PUN1fZQoaAZoCWgPQwik4ZS5+aYCwJSGlFKUaBVLMmgWR0B40hZgXuVpdX2UKGgGaAloD0MI8DDtm/trAMCUhpRSlGgVSzJoFkdAeNVhFEy+H3V9lChoBmgJaA9DCEj+YOC5NwTAlIaUUpRoFUsyaBZHQHjYdRvWH1x1fZQoaAZoCWgPQwih2AqalrgDwJSGlFKUaBVLMmgWR0B4272K2rn1dX2UKGgGaAloD0MISkBMwoU8AMCUhpRSlGgVSzJoFkdAeN8CIDYAbXV9lChoBmgJaA9DCAIs8uuH2ATAlIaUUpRoFUsyaBZHQHjh/gJkXk51fZQoaAZoCWgPQwgpJJnVO9wCwJSGlFKUaBVLMmgWR0B45QaqCHymdX2UKGgGaAloD0MIxNLAj2r4AsCUhpRSlGgVSzJoFkdAeOgBfrrxAnV9lChoBmgJaA9DCDi/YaJBigTAlIaUUpRoFUsyaBZHQHjq8rmQr+Z1fZQoaAZoCWgPQwiFKF/QQmIAwJSGlFKUaBVLMmgWR0B47iEWZZ0TdX2UKGgGaAloD0MIKVyPwvUoBcCUhpRSlGgVSzJoFkdAePFQyRB/qnV9lChoBmgJaA9DCIRHG0esRQDAlIaUUpRoFUsyaBZHQHj0cQmNR3x1fZQoaAZoCWgPQwhg5jv4iUP8v5SGlFKUaBVLMmgWR0B492BGx2SudX2UKGgGaAloD0MIgXaHFAOk/b+UhpRSlGgVSzJoFkdAePqBsANoanV9lChoBmgJaA9DCAiSdw5lyAHAlIaUUpRoFUsyaBZHQHj92CyyD7J1fZQoaAZoCWgPQwhgHccPlUb5v5SGlFKUaBVLMmgWR0B5ARddE9dNdX2UKGgGaAloD0MIG0esxadA/b+UhpRSlGgVSzJoFkdAeQRgNgBtDXV9lChoBmgJaA9DCG40gLdAQv6/lIaUUpRoFUsyaBZHQHkHadpZfUp1fZQoaAZoCWgPQwjONjemJwwCwJSGlFKUaBVLMmgWR0B5Co/TspocdX2UKGgGaAloD0MIp1zhXS4CAsCUhpRSlGgVSzJoFkdAeQ3O6/ZdwHV9lChoBmgJaA9DCOjZrPpcrf2/lIaUUpRoFUsyaBZHQHkQvffoA4p1fZQoaAZoCWgPQwh63/jaMwv/v5SGlFKUaBVLMmgWR0B5E79LpRoAdX2UKGgGaAloD0MIq0GY271c+7+UhpRSlGgVSzJoFkdAeRbWLgn+h3V9lChoBmgJaA9DCNFdEmdFFP2/lIaUUpRoFUsyaBZHQHkZrrX18LN1fZQoaAZoCWgPQwgd5WA2Acb+v5SGlFKUaBVLMmgWR0B5HKois4kvdX2UKGgGaAloD0MIz7uxoDDo+b+UhpRSlGgVSzJoFkdAeR+/OMVDbHV9lChoBmgJaA9DCAOwARHiCv6/lIaUUpRoFUsyaBZHQHkiwWi1y/91fZQoaAZoCWgPQwi1/MBVnoD9v5SGlFKUaBVLMmgWR0B5Jc60Y0l7dX2UKGgGaAloD0MIwAZEiCuHAsCUhpRSlGgVSzJoFkdAeSjbcGkeqHV9lChoBmgJaA9DCJmCNc6m4/y/lIaUUpRoFUsyaBZHQHkr1QdjoZB1fZQoaAZoCWgPQwgtfH2tS43/v5SGlFKUaBVLMmgWR0B5LzKr7wazdX2UKGgGaAloD0MIchb2tMPf+r+UhpRSlGgVSzJoFkdAeTIZaV2RrHV9lChoBmgJaA9DCBgnvtpRnPm/lIaUUpRoFUsyaBZHQHk1dpItlI51fZQoaAZoCWgPQwgy422l1yb8v5SGlFKUaBVLMmgWR0B5OKV7hNucdX2UKGgGaAloD0MIsVOsGoR5/7+UhpRSlGgVSzJoFkdAeTu5Xlr/KnV9lChoBmgJaA9DCGPvxRftUQPAlIaUUpRoFUsyaBZHQHk/LEpAlfJ1fZQoaAZoCWgPQwjXFwltOZf6v5SGlFKUaBVLMmgWR0B5Qmw/xDsudX2UKGgGaAloD0MIegCL/Poh/b+UhpRSlGgVSzJoFkdAeUXBRAKOUHV9lChoBmgJaA9DCJVh3A2i9fu/lIaUUpRoFUsyaBZHQHlIxFNL1291fZQoaAZoCWgPQwg1Ymafx+j6v5SGlFKUaBVLMmgWR0B5S/bUPQOXdX2UKGgGaAloD0MIgNjSo6ne+r+UhpRSlGgVSzJoFkdAeU8LhaTwD3V9lChoBmgJaA9DCAeWI2QgT/q/lIaUUpRoFUsyaBZHQHlSTXBguyx1fZQoaAZoCWgPQwgSZ0XURF/+v5SGlFKUaBVLMmgWR0B5VYRJ2+wldX2UKGgGaAloD0MIZKw2/68aAMCUhpRSlGgVSzJoFkdAeVjI7eVLSXV9lChoBmgJaA9DCGahndMs0P+/lIaUUpRoFUsyaBZHQHlbtitq59V1fZQoaAZoCWgPQwjLS/4nfzf/v5SGlFKUaBVLMmgWR0B5Xsrc0tROdX2UKGgGaAloD0MIEDtT6LzG+b+UhpRSlGgVSzJoFkdAeWIEkjX4CnV9lChoBmgJaA9DCHEA/b5/M/i/lIaUUpRoFUsyaBZHQHllLpu/Dcd1fZQoaAZoCWgPQwj6X65FC1ACwJSGlFKUaBVLMmgWR0B5aErBj4HpdX2UKGgGaAloD0MIdJXurrOBAcCUhpRSlGgVSzJoFkdAeWtInBtUGXV9lChoBmgJaA9DCLRby2Q4Hv2/lIaUUpRoFUsyaBZHQHluU8V58jR1fZQoaAZoCWgPQwi3DaMgePz8v5SGlFKUaBVLMmgWR0B5cYtAcDKYdX2UKGgGaAloD0MI5j45ChBF+7+UhpRSlGgVSzJoFkdAeXTPqLS/kHV9lChoBmgJaA9DCLX7VYDvVgHAlIaUUpRoFUsyaBZHQHl4Jb+tKZl1fZQoaAZoCWgPQwilL4Sc9x8AwJSGlFKUaBVLMmgWR0B5e1WfbsWwdX2UKGgGaAloD0MId9oaEYxD+L+UhpRSlGgVSzJoFkdAeX6Eit7rs3V9lChoBmgJaA9DCPMd/MQBtPy/lIaUUpRoFUsyaBZHQHmByRSxZ+x1fZQoaAZoCWgPQwhOKhprf+f8v5SGlFKUaBVLMmgWR0B5hOg6EJ0GdX2UKGgGaAloD0MIt11ortOIAMCUhpRSlGgVSzJoFkdAeYg7dznzQXV9lChoBmgJaA9DCB3KUBVTKfu/lIaUUpRoFUsyaBZHQHmLTGxUvPF1fZQoaAZoCWgPQwjgTEwXYnX6v5SGlFKUaBVLMmgWR0B5jqcy31BddX2UKGgGaAloD0MIw0Xu6epOBcCUhpRSlGgVSzJoFkdAeZHGhVU+93V9lChoBmgJaA9DCEYMO4xJP/q/lIaUUpRoFUsyaBZHQHmVAHu7YkF1fZQoaAZoCWgPQwjmkqrtJvj+v5SGlFKUaBVLMmgWR0B5mDdtVJcxdX2UKGgGaAloD0MIF50std4v+7+UhpRSlGgVSzJoFkdAeZtRPXTVlXV9lChoBmgJaA9DCJzCSgUVlf2/lIaUUpRoFUsyaBZHQHmeZiy6cy51fZQoaAZoCWgPQwhIwylz8y0AwJSGlFKUaBVLMmgWR0B5oWgbp/wzdX2UKGgGaAloD0MIy/J1Gf5TAcCUhpRSlGgVSzJoFkdAeaRW7OE/S3V9lChoBmgJaA9DCJnxttJrc/6/lIaUUpRoFUsyaBZHQHmnaBEroW51fZQoaAZoCWgPQwirsYS1Mfb7v5SGlFKUaBVLMmgWR0B5qnwpe/pMdX2UKGgGaAloD0MIqMe2DDhL+L+UhpRSlGgVSzJoFkdAea2JXyRSxnV9lChoBmgJaA9DCBDmdi/3KQHAlIaUUpRoFUsyaBZHQHmweEytV7x1fZQoaAZoCWgPQwj6J7hYUQP/v5SGlFKUaBVLMmgWR0B5s7X/YJ3QdX2UKGgGaAloD0MICHdn7bZL/L+UhpRSlGgVSzJoFkdAebbHymQ8wHV9lChoBmgJaA9DCGZpp+ZyQwLAlIaUUpRoFUsyaBZHQHm6BoAXEZR1fZQoaAZoCWgPQwgGY0Si0LIBwJSGlFKUaBVLMmgWR0B5vSc4HX2/dX2UKGgGaAloD0MI1lOrr66qAsCUhpRSlGgVSzJoFkdAecBKsdT5wnV9lChoBmgJaA9DCIf7yK1Jd/2/lIaUUpRoFUsyaBZHQHnDwzxgAp91fZQoaAZoCWgPQwg2kZkLXL4AwJSGlFKUaBVLMmgWR0B5xvz19ORDdX2UKGgGaAloD0MIFto5zQLt+7+UhpRSlGgVSzJoFkdAecqBtUGVzXV9lChoBmgJaA9DCFH0wMdgRf+/lIaUUpRoFUsyaBZHQHnNp5JK8L91fZQoaAZoCWgPQwi9HHbfMfz6v5SGlFKUaBVLMmgWR0B50Lvd/J/5dX2UKGgGaAloD0MI93KfHAUoA8CUhpRSlGgVSzJoFkdAedP4YrJ8v3V9lChoBmgJaA9DCGPTSiGQy/+/lIaUUpRoFUsyaBZHQHnXX7UG3Wp1fZQoaAZoCWgPQwjGbp9VZsr3v5SGlFKUaBVLMmgWR0B52q8Yht+DdX2UKGgGaAloD0MIo3TpX5JK+b+UhpRSlGgVSzJoFkdAed29gnc+JXV9lChoBmgJaA9DCG/ZIf5hSwHAlIaUUpRoFUsyaBZHQHnhBZdOZb91fZQoaAZoCWgPQwjNrRBWYwn5v5SGlFKUaBVLMmgWR0B55DUqhDgJdX2UKGgGaAloD0MIlNkgk4wc+7+UhpRSlGgVSzJoFkdAeed5QxesxXV9lChoBmgJaA9DCDCbAMPy5/u/lIaUUpRoFUsyaBZHQHnqsTFl05l1fZQoaAZoCWgPQwgnnx7bMiD9v5SGlFKUaBVLMmgWR0B57akHlfZ3dX2UKGgGaAloD0MI8KSFyyps/7+UhpRSlGgVSzJoFkdAefCih37k4nV9lChoBmgJaA9DCJgXYB+d+vi/lIaUUpRoFUsyaBZHQHnzr5M10kp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6855672dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f68556d8e70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 337680, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673899159075181639, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhW9LPlHktz+YRzG+4xAzv1cpdj+4TsS+jrO1vtolGj9tdOg/Okugv6GBuD+OS+c+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6NONP+G9yj95Ptm+jd+nv5TVUT8rPr++VFCnP965TT+PGdk/9xHKv21ysz8FEO8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFb0s+UeS3P5hHMb6in9G8vn59u0lTkLvjEDO/Vyl2P7hOxL4v+o29mFRguxslI76Os7W+2iUaP2106D9+iYA9gB9SvZMiqDs6S6C/oYG4P45L5z4uzUW9l+iWPRB0jL2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.1986676 1.4366552 -0.17312467]\n [-0.6994764 0.9615683 -0.38341308]\n [-0.35488552 0.60214007 1.816053 ]\n [-1.2522957 1.441456 0.4517483 ]]", "desired_goal": "[[ 1.1080294 1.5839196 -0.42430475]\n [-1.3115097 0.8196652 -0.37352118]\n [ 1.3071389 0.80361736 1.6960925 ]\n [-1.5786732 1.4019295 0.4669191 ]]", "observation": "[[ 0.1986676 1.4366552 -0.17312467 -0.02558881 -0.00386803 -0.00440446]\n [-0.6994764 0.9615683 -0.38341308 -0.06932484 -0.00342301 -0.15932123]\n [-0.35488552 0.60214007 1.816053 0.06276225 -0.05129957 0.00513107]\n [-1.2522957 1.441456 0.4517483 -0.04829138 0.07368582 -0.06858075]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkmsveOqFj7OX1w+i1fkPZPYWj1XvEg+eYLdvBgYH71BDnc82h8BPiL6DT5rCCI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08412455 0.14713626 0.21520922]\n [ 0.1114951 0.0534292 0.19603096]\n [-0.02703975 -0.03884134 0.01507908]\n [ 0.12609807 0.1386495 0.15823524]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.83116, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHjE6B8CUhpRSlIwBbJRLMowBdJRHQIoMsijcmBx1fZQoaAZoCWgPQwhT7Ggc6jf5v5SGlFKUaBVLMmgWR0CKC7TbWVeKdX2UKGgGaAloD0MI3GPpQxe0BsCUhpRSlGgVSzJoFkdAigptNJvo/3V9lChoBmgJaA9DCD0P7s7a7RTAlIaUUpRoFUsyaBZHQIoJYzLwF1V1fZQoaAZoCWgPQwi4rwPnjOgJwJSGlFKUaBVLMmgWR0CKERhFVktmdX2UKGgGaAloD0MIAwe0dAVbCMCUhpRSlGgVSzJoFkdAihAZoXbdrXV9lChoBmgJaA9DCNC2mnXGVwnAlIaUUpRoFUsyaBZHQIoO0ehf0Ep1fZQoaAZoCWgPQwhnutdJfVnyv5SGlFKUaBVLMmgWR0CKDcdhAnlXdX2UKGgGaAloD0MIjgOvljvzBcCUhpRSlGgVSzJoFkdAihU11wHZ9XV9lChoBmgJaA9DCP4ORYE+Uf6/lIaUUpRoFUsyaBZHQIoUNorWiDd1fZQoaAZoCWgPQwiygt+GGK8GwJSGlFKUaBVLMmgWR0CKEu6xxDLKdX2UKGgGaAloD0MIF7zoK0hTBMCUhpRSlGgVSzJoFkdAihHjj7yhBnV9lChoBmgJaA9DCAZKCiyAKfu/lIaUUpRoFUsyaBZHQIoZsRYigTR1fZQoaAZoCWgPQwhdUrXdBP8MwJSGlFKUaBVLMmgWR0CKGLJr+HafdX2UKGgGaAloD0MIOltAaD388b+UhpRSlGgVSzJoFkdAihdqq4pc5nV9lChoBmgJaA9DCNQq+kMzD/G/lIaUUpRoFUsyaBZHQIoWYKBun/F1fZQoaAZoCWgPQwir0asBSkP1v5SGlFKUaBVLMmgWR0CKHft+kP+XdX2UKGgGaAloD0MIyjSaXIyhAMCUhpRSlGgVSzJoFkdAihz8mrsByXV9lChoBmgJaA9DCLK7QEmBBey/lIaUUpRoFUsyaBZHQIobtMTN+sp1fZQoaAZoCWgPQwh/9iNFZNj6v5SGlFKUaBVLMmgWR0CKGqphF3INdX2UKGgGaAloD0MI8yA9RQ4R6L+UhpRSlGgVSzJoFkdAiiJHuAqd6XV9lChoBmgJaA9DCDKR0mweFxTAlIaUUpRoFUsyaBZHQIohSC+UQkJ1fZQoaAZoCWgPQwgqAwe0dIUBwJSGlFKUaBVLMmgWR0CKH//vOQhfdX2UKGgGaAloD0MID39N1qhH+L+UhpRSlGgVSzJoFkdAih72Bas6rHV9lChoBmgJaA9DCL2L9+P2i/i/lIaUUpRoFUsyaBZHQIomka4tpVV1fZQoaAZoCWgPQwhmhSLdzykKwJSGlFKUaBVLMmgWR0CKJZJvHcUNdX2UKGgGaAloD0MIaNDQP8EF+b+UhpRSlGgVSzJoFkdAiiRKIi1RcnV9lChoBmgJaA9DCL06x4DslQnAlIaUUpRoFUsyaBZHQIojP2RJVbR1fZQoaAZoCWgPQwghO29js0MAwJSGlFKUaBVLMmgWR0CKKvYWcjJNdX2UKGgGaAloD0MIPYIbKVuk87+UhpRSlGgVSzJoFkdAiin3YcvM83V9lChoBmgJaA9DCMuisIuipw3AlIaUUpRoFUsyaBZHQIoor5CWu5l1fZQoaAZoCWgPQwhAprVpbK/+v5SGlFKUaBVLMmgWR0CKJ6X7+DODdX2UKGgGaAloD0MI+yKhLefS8r+UhpRSlGgVSzJoFkdAii9qQaJhv3V9lChoBmgJaA9DCFqdnKG4IwLAlIaUUpRoFUsyaBZHQIoua3LFGXp1fZQoaAZoCWgPQwi3lzRG60gCwJSGlFKUaBVLMmgWR0CKLSMo+fRNdX2UKGgGaAloD0MIB0KygAkc9b+UhpRSlGgVSzJoFkdAiiwZk9U0enV9lChoBmgJaA9DCCqnPSXnFBLAlIaUUpRoFUsyaBZHQIozzdxhlUZ1fZQoaAZoCWgPQwhtdM5PcZwCwJSGlFKUaBVLMmgWR0CKMs8IRh+fdX2UKGgGaAloD0MIQ67UsyAU8r+UhpRSlGgVSzJoFkdAijGGe+VTrHV9lChoBmgJaA9DCMFyhAzkmfO/lIaUUpRoFUsyaBZHQIowfPAwfyR1fZQoaAZoCWgPQwgx0/avrLTyv5SGlFKUaBVLMmgWR0CKOBPuXu3MdX2UKGgGaAloD0MIGQEVjiDV9b+UhpRSlGgVSzJoFkdAijcU5uIhyXV9lChoBmgJaA9DCI1Cklm9YxXAlIaUUpRoFUsyaBZHQIo1zLSuyNZ1fZQoaAZoCWgPQwgWiJ6USR0SwJSGlFKUaBVLMmgWR0CKNMIHC4z8dX2UKGgGaAloD0MICAQ6kzYV/r+UhpRSlGgVSzJoFkdAijxnjZL7GnV9lChoBmgJaA9DCOBJC5dVmPu/lIaUUpRoFUsyaBZHQIo7aIgvDgt1fZQoaAZoCWgPQwjaxTTTvc7nv5SGlFKUaBVLMmgWR0CKOiBgeA/cdX2UKGgGaAloD0MIV12HakqSAcCUhpRSlGgVSzJoFkdAijkWFev6j3V9lChoBmgJaA9DCIidKXReY++/lIaUUpRoFUsyaBZHQIpA1GI9C/p1fZQoaAZoCWgPQwhvZvSj4dTyv5SGlFKUaBVLMmgWR0CKP9Tn7pFDdX2UKGgGaAloD0MINBE2PL0SAsCUhpRSlGgVSzJoFkdAij6MnRb8nHV9lChoBmgJaA9DCKSqCaLuQwrAlIaUUpRoFUsyaBZHQIo9gpYs/Y91fZQoaAZoCWgPQwjww0FClK/ov5SGlFKUaBVLMmgWR0CKRR8CxNZedX2UKGgGaAloD0MIPFCnPLqR/r+UhpRSlGgVSzJoFkdAikQgLRa5gHV9lChoBmgJaA9DCBL27SQifPO/lIaUUpRoFUsyaBZHQIpC145cTrV1fZQoaAZoCWgPQwj1EmOZfqkEwJSGlFKUaBVLMmgWR0CKQcz67/XHdX2UKGgGaAloD0MIDMhe7/54BsCUhpRSlGgVSzJoFkdAiklw+UyHmHV9lChoBmgJaA9DCDv7yoP01PK/lIaUUpRoFUsyaBZHQIpIcaMrEtN1fZQoaAZoCWgPQwik42pkV1r5v5SGlFKUaBVLMmgWR0CKRyl8gIQfdX2UKGgGaAloD0MIZsBZSpaT6r+UhpRSlGgVSzJoFkdAikYfG2kSEnV9lChoBmgJaA9DCH/ZPXlYOBTAlIaUUpRoFUsyaBZHQIpNtVghKUV1fZQoaAZoCWgPQwiY9s391ePqv5SGlFKUaBVLMmgWR0CKTLcHnlnzdX2UKGgGaAloD0MIFTlE3JwKB8CUhpRSlGgVSzJoFkdAiktuZssQNHV9lChoBmgJaA9DCI/jh0ojhgbAlIaUUpRoFUsyaBZHQIpKY+jdpIt1fZQoaAZoCWgPQwgBh1ClZg/3v5SGlFKUaBVLMmgWR0CKUhEcbR4RdX2UKGgGaAloD0MI1nCRe7o6/r+UhpRSlGgVSzJoFkdAilERx1gYxnV9lChoBmgJaA9DCJZa7zfacQLAlIaUUpRoFUsyaBZHQIpPyVY6nzh1fZQoaAZoCWgPQwjcvdwnR4EHwJSGlFKUaBVLMmgWR0CKTr7bcoH+dX2UKGgGaAloD0MIbVfog2Ws8r+UhpRSlGgVSzJoFkdAilZ7nPmganV9lChoBmgJaA9DCKq53GCow/S/lIaUUpRoFUsyaBZHQIpVfFxXGOx1fZQoaAZoCWgPQwjf3jXoS68IwJSGlFKUaBVLMmgWR0CKVDO4XoC/dX2UKGgGaAloD0MIMqzijczDBcCUhpRSlGgVSzJoFkdAilMph4MWoHV9lChoBmgJaA9DCBKHbCBdbP+/lIaUUpRoFUsyaBZHQIpa7WCmMwV1fZQoaAZoCWgPQwiv7e2W5BAXwJSGlFKUaBVLMmgWR0CKWe5q/M4cdX2UKGgGaAloD0MIi1BsBU1rAsCUhpRSlGgVSzJoFkdAilimbCrLhnV9lChoBmgJaA9DCNV7Kqc9ZQjAlIaUUpRoFUsyaBZHQIpXnAEdNnJ1fZQoaAZoCWgPQwibyqKwiyL2v5SGlFKUaBVLMmgWR0CKXynNxEORdX2UKGgGaAloD0MI4V8EjZl0EsCUhpRSlGgVSzJoFkdAil4qL0jC53V9lChoBmgJaA9DCBA//z14/RDAlIaUUpRoFUsyaBZHQIpc5QHiWE91fZQoaAZoCWgPQwi8JM6KqDkQwJSGlFKUaBVLMmgWR0CKW9umaYu1dX2UKGgGaAloD0MIeVvptdmY8L+UhpRSlGgVSzJoFkdAimOlA3T/hnV9lChoBmgJaA9DCKIqptJP+Pi/lIaUUpRoFUsyaBZHQIpipciW3Sd1fZQoaAZoCWgPQwhqpKXydgQRwJSGlFKUaBVLMmgWR0CKYV10T101dX2UKGgGaAloD0MIu7a3W5JzEMCUhpRSlGgVSzJoFkdAimBTpPhybXV9lChoBmgJaA9DCNlfdk8eVvS/lIaUUpRoFUsyaBZHQIpnxB/qgRN1fZQoaAZoCWgPQwi6gm3Ek538v5SGlFKUaBVLMmgWR0CKZsVRk3CLdX2UKGgGaAloD0MI5wEs8uvHEMCUhpRSlGgVSzJoFkdAimV9KEnLJXV9lChoBmgJaA9DCOdWCKuxxATAlIaUUpRoFUsyaBZHQIpkclolD4R1fZQoaAZoCWgPQwgQlUbM7HP6v5SGlFKUaBVLMmgWR0CKbAFY+0PZdX2UKGgGaAloD0MIVWmLa3ym+L+UhpRSlGgVSzJoFkdAimsB0Qsf73V9lChoBmgJaA9DCJz6QPLOgRHAlIaUUpRoFUsyaBZHQIppucFyJbd1fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CKaK9RrJr+dX2UKGgGaAloD0MIGw+22O3TAcCUhpRSlGgVSzJoFkdAinBDvE0iyXV9lChoBmgJaA9DCKD83TtqTPO/lIaUUpRoFUsyaBZHQIpvRD5TIeZ1fZQoaAZoCWgPQwg/5gMCnUn2v5SGlFKUaBVLMmgWR0CKbfvJiiItdX2UKGgGaAloD0MIigCnd/EOEcCUhpRSlGgVSzJoFkdAimzxa5f+j3V9lChoBmgJaA9DCAJnKVlOIgfAlIaUUpRoFUsyaBZHQIp08mQbMot1fZQoaAZoCWgPQwiuKZDZWfTzv5SGlFKUaBVLMmgWR0CKc/KVY6n0dX2UKGgGaAloD0MIRuwTQDFiEcCUhpRSlGgVSzJoFkdAinKq6FuejHV9lChoBmgJaA9DCOvld5rM+PO/lIaUUpRoFUsyaBZHQIpxoGGEf1Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16884, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.315487141907215, "std_reward": 0.9853327972893781, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T20:13:52.585915"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbf1dd1b52d8cf08126f2e43b15a7b780cb69ac940e606d3ca5054802b35454c
|
3 |
+
size 3212
|