ThomasSimonini HF staff commited on
Commit
8febcd6
1 Parent(s): 5ea2a91

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -12.34 +/- 12.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0f72b7d8d2ddf0c704636a7d7a0bd90415c657b49405b3e65c33f446bf9657f
3
+ size 106581
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe9ed8056c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe9ed7fe080>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 12720,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1683719953460047981,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACPExwDAIYz9uoIS/AyOsPwBEGL45bXY9afFjwMhHcT+0A4S/ZfOIP5JMcr+xd66+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeN87vy5ru79Zn+i/q5pvvrM2eT8thAS+qWAVv+H3h7+A9xa/toGov76IRj/RMyC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAI8THAMAhjP26ghL+Srae/5cOLPwHeXj0DI6w/AEQYvjltdj3QI9++HMx5v61ICsBp8WPAyEdxP7QDhL+Yfii/kz0OPo1OAjxl84g/kkxyv7F3rr7BQ4S/Jq+Lv0gRBsCUaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-2.7803364 0.8868437 -1.0361459 ]\n [ 1.3448185 -0.1486969 0.06016276]\n [-3.5616095 0.94250154 -1.031363 ]\n [ 1.0699278 -0.9464809 -0.34075692]]",
34
+ "desired_goal": "[[-0.7338786 -1.4642084 -1.8173629 ]\n [-0.23398845 0.9734909 -0.12941046]\n [-0.58350617 -1.0622522 -0.58971405]\n [-1.3164585 0.775524 -0.62579066]]",
35
+ "observation": "[[-2.7803364 0.8868437 -1.0361459 -1.3099844 1.0919157 0.05441094]\n [ 1.3448185 -0.1486969 0.06016276 -0.4358201 -0.9757707 -2.1606858 ]\n [-3.5616095 0.94250154 -1.031363 -0.65818167 0.13890676 0.0079533 ]\n [ 1.0699278 -0.9464809 -0.34075692 -1.0333177 -1.0912826 -2.0948048 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHUSkPZAvxb0+Ggw+5OP9PQySAj4oYss89D2+PanSvD0nZm499MvbvQPMm727oos+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.08020804 -0.09628212 0.13681886]\n [ 0.12396982 0.12751025 0.02482708]\n [ 0.0928916 0.09219868 0.05820289]\n [-0.1073226 -0.07607272 0.2727259 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.98728,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDSt90A93bGMAWyUSzKMAXSUR0BGbFVktmL+dX2UKGgGR8AtP5ylvZRLaAdLMmgIR0BGRiAc1fmcdX2UKGgGR8Asgrf+CK77aAdLMmgIR0BGJrc0tRNzdX2UKGgGR7/TqfvnbItEaAdLBGgIR0BGdMgU1yeadX2UKGgGR8AoNxRVIZqEaAdLMmgIR0BGMHe7+T/ydX2UKGgGR8AtLorWiDdyaAdLMmgIR0BGvQV9F4LUdX2UKGgGR8Au+FPBSDRMaAdLMmgIR0BGnpj2Bas7dX2UKGgGR8AyweLNwBHTaAdLMmgIR0BG7UFjd56ddX2UKGgGR7+69QGfPHDKaAdLAmgIR0BG8o+nqFAWdX2UKGgGR7/zvEwWWQfZaAdLC2gIR0BG1zOPeYUndX2UKGgGR7+l69kBjnV5aAdLAWgIR0BG2ZqubI91dX2UKGgGR7/wv4EfT1CgaAdLCWgIR0BG7qq4pc5bdX2UKGgGR8AjxD6WPcSHaAdLMmgIR0BGqEcKgIyCdX2UKGgGR7+76ZYxL0z1aAdLAmgIR0BGrUKRdQfqdX2UKGgGR7/Q9C/oJRfnaAdLBGgIR0BGuSP+4smOdX2UKGgGR8Asw8FINEw4aAdLMmgIR0BHF0se4kNXdX2UKGgGR8AmbqqOtGNJaAdLMmgIR0BHa/R3NcGDdX2UKGgGR8AdeT8pCrtFaAdLMmgIR0BHanHeaa1DdX2UKGgGR8AqeF/x2B8QaAdLMmgIR0BHNky1uzhQdX2UKGgGR8AsVRQ79ycTaAdLMmgIR0BHl16eGwiadX2UKGgGR8Aq5mQr+YMOaAdLMmgIR0BH7BQWN3nqdX2UKGgGR8At5/c32mHhaAdLMmgIR0BH7AxrSE13dX2UKGgGR8AxpHe7+T/yaAdLMmgIR0BHt8tXgccVdX2UKGgGR8ArT/FzdUKiaAdLMmgIR0BIG2V/tpmFdX2UKGgGR8Axaf9P1tfpaAdLMmgIR0BIcIVmBe5XdX2UKGgGR8Aq3+uvECNkaAdLMmgIR0BIb/HYHxBmdX2UKGgGR8AtON5MURFraAdLMmgIR0BIOqSowVTKdX2UKGgGR7/YUSIxgy/LaAdLBGgIR0BIQ19fCyhSdX2UKGgGR7/zkELYwqRVaAdLCWgIR0BIWnJ1aGHpdX2UKGgGR8Ar1sqJ/G2kaAdLMmgIR0BIlagM+eOGdX2UKGgGR8ApvRR/EwWWaAdLMmgIR0BI5cnNPgvUdX2UKGgGR7+oow22oegdaAdLAWgIR0BI51Fpfx+bdX2UKGgGR7+XnMdLg4wRaAdLAWgIR0BI6RYigTRIdX2UKGgGR8AiaE0SAYpEaAdLMmgIR0BI1bP6be/IdX2UKGgGR8ABsORT0g8saAdLDWgIR0BI544Ia99MdX2UKGgGR8AnzqHGjsUqaAdLMmgIR0BIpmJemelLdX2UKGgGR8AvUM9bHIZJaAdLMmgIR0BI3DJdSl3ydX2UKGgGR8AYBQ/HHWBjaAdLMmgIR0BJLqcmShaldX2UKGgGR8AquVyFPBSDaAdLMmgIR0BJLzg/C66KdX2UKGgGR8AiZjawljVhaAdLMmgIR0BI7wgLZzxPdX2UKGgGR8Aibnr6ciGGaAdLMmgIR0BJJmGucMEzdX2UKGgGR8Akcs5GSZBtaAdLMmgIR0BJethNM496dX2UKGgGR8AlW/+sHSncaAdLMmgIR0BJd2L5ylvZdX2UKGgGR8AloVJtix3WaAdLMmgIR0BJN3gDRtxddX2UKGgGR8AydDe0ojOcaAdLMmgIR0BJbZnDiwSrdX2UKGgGR8AwH+RoysS1aAdLMmgIR0BJwC1iONo8dX2UKGgGR8ALxDiOvMbFaAdLGWgIR0BJmzQE6kqMdX2UKGgGR8AvgsAeaKDTaAdLMmgIR0BJfid8Rcu8dX2UKGgGR7+ndVNpM6BAaAdLAWgIR0BJf1zp5eJIdX2UKGgGR8Ar8M5wOvt/aAdLMmgIR0BJtRzq8lHCdX2UKGgGR7/VMMI/qxC6aAdLBGgIR0BJusLWqcVhdX2UKGgGR8AqgvugHu7ZaAdLMmgIR0BKB7F85S3tdX2UKGgGR8AvZNDc/MW5aAdLMmgIR0BJ4qoAGSpzdX2UKGgGR8AniIC2c8T0aAdLMmgIR0BJw9SVGCqZdX2UKGgGR7/N6t1ZDArQaAdLA2gIR0BJyCHqNZNgdX2UKGgGR8ApjiNsFdLQaAdLMmgIR0BJ/XDNyHVPdX2UKGgGR8Ay5Uqx1PnCaAdLMmgIR0BKSmCROk+HdX2UKGgGR8AvlRhMJx//aAdLMmgIR0BKJWTxG2CvdX2UKGgGR7/K0gKWszVMaAdLA2gIR0BKKdHtnf2sdX2UKGgGR8AvnwGW2PT5aAdLMmgIR0BKDC4rjHXFdX2UKGgGR8AygyvcJtzkaAdLMmgIR0BKQgTZg5R1dX2UKGgGR8ApBHDrJKaoaAdLMmgIR0BKjreqJdjYdX2UKGgGR8An+dYGMXJpaAdLMmgIR0BKbUz0pVjqdX2UKGgGR8AzFzJp35eraAdLMmgIR0BKT/5tWMjvdX2UKGgGR7/g3KSxJNCaaAdLBmgIR0BKWVtoBaLXdX2UKGgGR8AwHB2OhkAhaAdLMmgIR0BKhzRhMJyAdX2UKGgGR8A0UemvW6K+aAdLMmgIR0BK1A2ZRbbDdX2UKGgGR8AvLkd3jdYXaAdLMmgIR0BKsuF6AvtddX2UKGgGR8AwORaHKwIMaAdLMmgIR0BKnx/d69kCdX2UKGgGR8ArhNX5nDiwaAdLMmgIR0BKzQUQCjk/dX2UKGgGR8Avu0ZWJaaDaAdLMmgIR0BLGbrLQokSdX2UKGgGR8AnSXfIjnmraAdLMmgIR0BK+H62v0ROdX2UKGgGR8Ay7oybhFVlaAdLMmgIR0BK4mf5DZ13dX2UKGgGR8A0HhAnlXA/aAdLMmgIR0BLECjUNKAbdX2UKGgGR8AnBX6InBtUaAdLMmgIR0BLXP3i704BdX2UKGgGR8AuJuLrHEMtaAdLMmgIR0BLO6tT1kDqdX2UKGgGR7/x01EVnEl3aAdLCWgIR0BLaWMCLdeqdX2UKGgGR7/w4X40uUUxaAdLCGgIR0BLdKZDzAerdX2UKGgGR8Aw9fapPykLaAdLMmgIR0BLKAk9lmOEdX2UKGgGR8AtzJFLFn7IaAdLMmgIR0BLVZWzWwu/dX2UKGgGR8At4AIY3vQXaAdLMmgIR0BLgR8twrDqdX2UKGgGR8Ao6HgxagVXaAdLMmgIR0BLuVwYLsrvdX2UKGgGR8AlRoB7u2JBaAdLMmgIR0BLbSkCV8kVdX2UKGgGR8AvYSr5qM3qaAdLMmgIR0BLm1rAP/aQdX2UKGgGR8Ax8t9x6v7naAdLMmgIR0BLyBKcurZKdX2UKGgGR8AzUzZ6D5CXaAdLMmgIR0BMAgCwKSgXdX2UKGgGR8AspCCz1K5DaAdLMmgIR0BLuVGTcIqtdX2UKGgGR8AwUksBhhH9aAdLMmgIR0BL54EOiFj/dX2UKGgGR8AznUXYUWVNaAdLMmgIR0BMFBkI5YHPdX2UKGgGR7//xF3IMjNZaAdLEWgIR0BMAcy31BdEdX2UKGgGR8AptPCVKPGRaAdLMmgIR0BMT2phnanKdX2UKGgGR8AnqeZG8VYZaAdLMmgIR0BMAwuuieundX2UKGgGR8As+E9t/FzdaAdLMmgIR0BMXJ6hQFcIdX2UKGgGR8AxCqgAZKnOaAdLMmgIR0BMSn0Cih38dX2UKGgGR8Ai8zXz19ORaAdLMmgIR0BMmBFd9lVcdX2UKGgGR8AxwzvJA+pwaAdLMmgIR0BMTHjyWiUQdX2UKGgGR8AjKwfyPMjeaAdLMmgIR0BMplb/wRXfdX2UKGgGR8Arf8jzI3iraAdLMmgIR0BMkWRRuTA4dX2UKGgGR8ApuVxjriVCaAdLMmgIR0BM3sNDtw71dX2UKGgGR7+mtp22Xsw+aAdLAWgIR0BM4A0bcXWOdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 635,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e31c1e0a64e3530fe9050c5ff8f7063ae3daed30d0494e0ceac44255d4260c2
3
+ size 44606
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2bc21a91a5b53fa05d3ac4f0e1c5c62969c86abeb1e8caa14d5fec418b67265
3
+ size 45886
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe9ed8056c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe9ed7fe080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 12720, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683719953460047981, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACPExwDAIYz9uoIS/AyOsPwBEGL45bXY9afFjwMhHcT+0A4S/ZfOIP5JMcr+xd66+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeN87vy5ru79Zn+i/q5pvvrM2eT8thAS+qWAVv+H3h7+A9xa/toGov76IRj/RMyC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAI8THAMAhjP26ghL+Srae/5cOLPwHeXj0DI6w/AEQYvjltdj3QI9++HMx5v61ICsBp8WPAyEdxP7QDhL+Yfii/kz0OPo1OAjxl84g/kkxyv7F3rr7BQ4S/Jq+Lv0gRBsCUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-2.7803364 0.8868437 -1.0361459 ]\n [ 1.3448185 -0.1486969 0.06016276]\n [-3.5616095 0.94250154 -1.031363 ]\n [ 1.0699278 -0.9464809 -0.34075692]]", "desired_goal": "[[-0.7338786 -1.4642084 -1.8173629 ]\n [-0.23398845 0.9734909 -0.12941046]\n [-0.58350617 -1.0622522 -0.58971405]\n [-1.3164585 0.775524 -0.62579066]]", "observation": "[[-2.7803364 0.8868437 -1.0361459 -1.3099844 1.0919157 0.05441094]\n [ 1.3448185 -0.1486969 0.06016276 -0.4358201 -0.9757707 -2.1606858 ]\n [-3.5616095 0.94250154 -1.031363 -0.65818167 0.13890676 0.0079533 ]\n [ 1.0699278 -0.9464809 -0.34075692 -1.0333177 -1.0912826 -2.0948048 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHUSkPZAvxb0+Ggw+5OP9PQySAj4oYss89D2+PanSvD0nZm499MvbvQPMm727oos+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08020804 -0.09628212 0.13681886]\n [ 0.12396982 0.12751025 0.02482708]\n [ 0.0928916 0.09219868 0.05820289]\n [-0.1073226 -0.07607272 0.2727259 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.98728, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDSt90A93bGMAWyUSzKMAXSUR0BGbFVktmL+dX2UKGgGR8AtP5ylvZRLaAdLMmgIR0BGRiAc1fmcdX2UKGgGR8Asgrf+CK77aAdLMmgIR0BGJrc0tRNzdX2UKGgGR7/TqfvnbItEaAdLBGgIR0BGdMgU1yeadX2UKGgGR8AoNxRVIZqEaAdLMmgIR0BGMHe7+T/ydX2UKGgGR8AtLorWiDdyaAdLMmgIR0BGvQV9F4LUdX2UKGgGR8Au+FPBSDRMaAdLMmgIR0BGnpj2Bas7dX2UKGgGR8AyweLNwBHTaAdLMmgIR0BG7UFjd56ddX2UKGgGR7+69QGfPHDKaAdLAmgIR0BG8o+nqFAWdX2UKGgGR7/zvEwWWQfZaAdLC2gIR0BG1zOPeYUndX2UKGgGR7+l69kBjnV5aAdLAWgIR0BG2ZqubI91dX2UKGgGR7/wv4EfT1CgaAdLCWgIR0BG7qq4pc5bdX2UKGgGR8AjxD6WPcSHaAdLMmgIR0BGqEcKgIyCdX2UKGgGR7+76ZYxL0z1aAdLAmgIR0BGrUKRdQfqdX2UKGgGR7/Q9C/oJRfnaAdLBGgIR0BGuSP+4smOdX2UKGgGR8Asw8FINEw4aAdLMmgIR0BHF0se4kNXdX2UKGgGR8AmbqqOtGNJaAdLMmgIR0BHa/R3NcGDdX2UKGgGR8AdeT8pCrtFaAdLMmgIR0BHanHeaa1DdX2UKGgGR8AqeF/x2B8QaAdLMmgIR0BHNky1uzhQdX2UKGgGR8AsVRQ79ycTaAdLMmgIR0BHl16eGwiadX2UKGgGR8Aq5mQr+YMOaAdLMmgIR0BH7BQWN3nqdX2UKGgGR8At5/c32mHhaAdLMmgIR0BH7AxrSE13dX2UKGgGR8AxpHe7+T/yaAdLMmgIR0BHt8tXgccVdX2UKGgGR8ArT/FzdUKiaAdLMmgIR0BIG2V/tpmFdX2UKGgGR8Axaf9P1tfpaAdLMmgIR0BIcIVmBe5XdX2UKGgGR8Aq3+uvECNkaAdLMmgIR0BIb/HYHxBmdX2UKGgGR8AtON5MURFraAdLMmgIR0BIOqSowVTKdX2UKGgGR7/YUSIxgy/LaAdLBGgIR0BIQ19fCyhSdX2UKGgGR7/zkELYwqRVaAdLCWgIR0BIWnJ1aGHpdX2UKGgGR8Ar1sqJ/G2kaAdLMmgIR0BIlagM+eOGdX2UKGgGR8ApvRR/EwWWaAdLMmgIR0BI5cnNPgvUdX2UKGgGR7+oow22oegdaAdLAWgIR0BI51Fpfx+bdX2UKGgGR7+XnMdLg4wRaAdLAWgIR0BI6RYigTRIdX2UKGgGR8AiaE0SAYpEaAdLMmgIR0BI1bP6be/IdX2UKGgGR8ABsORT0g8saAdLDWgIR0BI544Ia99MdX2UKGgGR8AnzqHGjsUqaAdLMmgIR0BIpmJemelLdX2UKGgGR8AvUM9bHIZJaAdLMmgIR0BI3DJdSl3ydX2UKGgGR8AYBQ/HHWBjaAdLMmgIR0BJLqcmShaldX2UKGgGR8AquVyFPBSDaAdLMmgIR0BJLzg/C66KdX2UKGgGR8AiZjawljVhaAdLMmgIR0BI7wgLZzxPdX2UKGgGR8Aibnr6ciGGaAdLMmgIR0BJJmGucMEzdX2UKGgGR8Akcs5GSZBtaAdLMmgIR0BJethNM496dX2UKGgGR8AlW/+sHSncaAdLMmgIR0BJd2L5ylvZdX2UKGgGR8AloVJtix3WaAdLMmgIR0BJN3gDRtxddX2UKGgGR8AydDe0ojOcaAdLMmgIR0BJbZnDiwSrdX2UKGgGR8AwH+RoysS1aAdLMmgIR0BJwC1iONo8dX2UKGgGR8ALxDiOvMbFaAdLGWgIR0BJmzQE6kqMdX2UKGgGR8AvgsAeaKDTaAdLMmgIR0BJfid8Rcu8dX2UKGgGR7+ndVNpM6BAaAdLAWgIR0BJf1zp5eJIdX2UKGgGR8Ar8M5wOvt/aAdLMmgIR0BJtRzq8lHCdX2UKGgGR7/VMMI/qxC6aAdLBGgIR0BJusLWqcVhdX2UKGgGR8AqgvugHu7ZaAdLMmgIR0BKB7F85S3tdX2UKGgGR8AvZNDc/MW5aAdLMmgIR0BJ4qoAGSpzdX2UKGgGR8AniIC2c8T0aAdLMmgIR0BJw9SVGCqZdX2UKGgGR7/N6t1ZDArQaAdLA2gIR0BJyCHqNZNgdX2UKGgGR8ApjiNsFdLQaAdLMmgIR0BJ/XDNyHVPdX2UKGgGR8Ay5Uqx1PnCaAdLMmgIR0BKSmCROk+HdX2UKGgGR8AvlRhMJx//aAdLMmgIR0BKJWTxG2CvdX2UKGgGR7/K0gKWszVMaAdLA2gIR0BKKdHtnf2sdX2UKGgGR8AvnwGW2PT5aAdLMmgIR0BKDC4rjHXFdX2UKGgGR8AygyvcJtzkaAdLMmgIR0BKQgTZg5R1dX2UKGgGR8ApBHDrJKaoaAdLMmgIR0BKjreqJdjYdX2UKGgGR8An+dYGMXJpaAdLMmgIR0BKbUz0pVjqdX2UKGgGR8AzFzJp35eraAdLMmgIR0BKT/5tWMjvdX2UKGgGR7/g3KSxJNCaaAdLBmgIR0BKWVtoBaLXdX2UKGgGR8AwHB2OhkAhaAdLMmgIR0BKhzRhMJyAdX2UKGgGR8A0UemvW6K+aAdLMmgIR0BK1A2ZRbbDdX2UKGgGR8AvLkd3jdYXaAdLMmgIR0BKsuF6AvtddX2UKGgGR8AwORaHKwIMaAdLMmgIR0BKnx/d69kCdX2UKGgGR8ArhNX5nDiwaAdLMmgIR0BKzQUQCjk/dX2UKGgGR8Avu0ZWJaaDaAdLMmgIR0BLGbrLQokSdX2UKGgGR8AnSXfIjnmraAdLMmgIR0BK+H62v0ROdX2UKGgGR8Ay7oybhFVlaAdLMmgIR0BK4mf5DZ13dX2UKGgGR8A0HhAnlXA/aAdLMmgIR0BLECjUNKAbdX2UKGgGR8AnBX6InBtUaAdLMmgIR0BLXP3i704BdX2UKGgGR8AuJuLrHEMtaAdLMmgIR0BLO6tT1kDqdX2UKGgGR7/x01EVnEl3aAdLCWgIR0BLaWMCLdeqdX2UKGgGR7/w4X40uUUxaAdLCGgIR0BLdKZDzAerdX2UKGgGR8Aw9fapPykLaAdLMmgIR0BLKAk9lmOEdX2UKGgGR8AtzJFLFn7IaAdLMmgIR0BLVZWzWwu/dX2UKGgGR8At4AIY3vQXaAdLMmgIR0BLgR8twrDqdX2UKGgGR8Ao6HgxagVXaAdLMmgIR0BLuVwYLsrvdX2UKGgGR8AlRoB7u2JBaAdLMmgIR0BLbSkCV8kVdX2UKGgGR8AvYSr5qM3qaAdLMmgIR0BLm1rAP/aQdX2UKGgGR8Ax8t9x6v7naAdLMmgIR0BLyBKcurZKdX2UKGgGR8AzUzZ6D5CXaAdLMmgIR0BMAgCwKSgXdX2UKGgGR8AspCCz1K5DaAdLMmgIR0BLuVGTcIqtdX2UKGgGR8AwUksBhhH9aAdLMmgIR0BL54EOiFj/dX2UKGgGR8AznUXYUWVNaAdLMmgIR0BMFBkI5YHPdX2UKGgGR7//xF3IMjNZaAdLEWgIR0BMAcy31BdEdX2UKGgGR8AptPCVKPGRaAdLMmgIR0BMT2phnanKdX2UKGgGR8AnqeZG8VYZaAdLMmgIR0BMAwuuieundX2UKGgGR8As+E9t/FzdaAdLMmgIR0BMXJ6hQFcIdX2UKGgGR8AxCqgAZKnOaAdLMmgIR0BMSn0Cih38dX2UKGgGR8Ai8zXz19ORaAdLMmgIR0BMmBFd9lVcdX2UKGgGR8AxwzvJA+pwaAdLMmgIR0BMTHjyWiUQdX2UKGgGR8AjKwfyPMjeaAdLMmgIR0BMplb/wRXfdX2UKGgGR8Arf8jzI3iraAdLMmgIR0BMkWRRuTA4dX2UKGgGR8ApuVxjriVCaAdLMmgIR0BM3sNDtw71dX2UKGgGR7+mtp22Xsw+aAdLAWgIR0BM4A0bcXWOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 635, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -12.339092843979596, "std_reward": 12.396692197155494, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T12:05:51.479329"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2412d63ef86415c845915c4fe9b0257187036ee5e18b2e54971ec0fce2a28cfe
3
+ size 2553