Triangle104 commited on
Commit
3c52b72
1 Parent(s): 1fbfb7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +228 -0
README.md CHANGED
@@ -27,6 +27,234 @@ extra_gated_description: If you want to learn more about how we process your per
27
  This model was converted to GGUF format from [`mistralai/Mistral-Small-Instruct-2409`](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
28
  Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) for more details on the model.
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ## Use with llama.cpp
31
  Install llama.cpp through brew (works on Mac and Linux)
32
 
 
27
  This model was converted to GGUF format from [`mistralai/Mistral-Small-Instruct-2409`](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
28
  Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) for more details on the model.
29
 
30
+ ---
31
+ Model details:
32
+ -
33
+ Mistral-Small-Instruct-2409 is an instruct fine-tuned version with the following characteristics:
34
+
35
+ 22B parameters
36
+ Vocabulary to 32768
37
+ Supports function calling
38
+ 32k sequence length
39
+
40
+ Usage Examples
41
+ vLLM (recommended)
42
+
43
+ We recommend using this model with the vLLM library to implement production-ready inference pipelines.
44
+
45
+ Installation
46
+
47
+ Make sure you install vLLM >= v0.6.1.post1:
48
+
49
+ pip install --upgrade vllm
50
+
51
+ Also make sure you have mistral_common >= 1.4.1 installed:
52
+
53
+ pip install --upgrade mistral_common
54
+
55
+ You can also make use of a ready-to-go docker image.
56
+
57
+ Offline
58
+
59
+ from vllm import LLM
60
+ from vllm.sampling_params import SamplingParams
61
+
62
+ model_name = "mistralai/Mistral-Small-Instruct-2409"
63
+
64
+ sampling_params = SamplingParams(max_tokens=8192)
65
+
66
+ # note that running Mistral-Small on a single GPU requires at least 44 GB of GPU RAM
67
+ # If you want to divide the GPU requirement over multiple devices, please add *e.g.* `tensor_parallel=2`
68
+ llm = LLM(model=model_name, tokenizer_mode="mistral", config_format="mistral", load_format="mistral")
69
+
70
+ prompt = "How often does the letter r occur in Mistral?"
71
+
72
+ messages = [
73
+ {
74
+ "role": "user",
75
+ "content": prompt
76
+ },
77
+ ]
78
+
79
+ outputs = llm.chat(messages, sampling_params=sampling_params)
80
+
81
+ print(outputs[0].outputs[0].text)
82
+
83
+ Server
84
+
85
+ You can also use Mistral Small in a server/client setting.
86
+
87
+ Spin up a server:
88
+
89
+ vllm serve mistralai/Mistral-Small-Instruct-2409 --tokenizer_mode mistral --config_format mistral --load_format mistral
90
+
91
+ Note: Running Mistral-Small on a single GPU requires at least 44 GB of GPU RAM.
92
+
93
+ If you want to divide the GPU requirement over multiple devices, please add e.g. --tensor_parallel=2
94
+
95
+ And ping the client:
96
+
97
+ curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
98
+ --header 'Content-Type: application/json' \
99
+ --header 'Authorization: Bearer token' \
100
+ --data '{
101
+ "model": "mistralai/Mistral-Small-Instruct-2409",
102
+ "messages": [
103
+ {
104
+ "role": "user",
105
+ "content": "How often does the letter r occur in Mistral?"
106
+ }
107
+ ]
108
+ }'
109
+
110
+ Mistral-inference
111
+
112
+ We recommend using mistral-inference to quickly try out / "vibe-check" the model.
113
+
114
+ Install
115
+
116
+ Make sure to have mistral_inference >= 1.4.1 installed.
117
+
118
+ pip install mistral_inference --upgrade
119
+
120
+ Download
121
+
122
+ from huggingface_hub import snapshot_download
123
+ from pathlib import Path
124
+
125
+ mistral_models_path = Path.home().joinpath('mistral_models', '22B-Instruct-Small')
126
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
127
+
128
+ snapshot_download(repo_id="mistralai/Mistral-Small-Instruct-2409", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
129
+
130
+ Chat
131
+
132
+ After installing mistral_inference, a mistral-chat CLI command should be available in your environment. You can chat with the model using
133
+
134
+ mistral-chat $HOME/mistral_models/22B-Instruct-Small --instruct --max_tokens 256
135
+
136
+ Instruct following
137
+
138
+ from mistral_inference.transformer import Transformer
139
+ from mistral_inference.generate import generate
140
+
141
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
142
+ from mistral_common.protocol.instruct.messages import UserMessage
143
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
144
+
145
+
146
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
147
+ model = Transformer.from_folder(mistral_models_path)
148
+
149
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="How often does the letter r occur in Mistral?")])
150
+
151
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
152
+
153
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
154
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
155
+
156
+ print(result)
157
+
158
+ Function calling
159
+
160
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
161
+ from mistral_inference.transformer import Transformer
162
+ from mistral_inference.generate import generate
163
+
164
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
165
+ from mistral_common.protocol.instruct.messages import UserMessage
166
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
167
+
168
+
169
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
170
+ model = Transformer.from_folder(mistral_models_path)
171
+
172
+ completion_request = ChatCompletionRequest(
173
+ tools=[
174
+ Tool(
175
+ function=Function(
176
+ name="get_current_weather",
177
+ description="Get the current weather",
178
+ parameters={
179
+ "type": "object",
180
+ "properties": {
181
+ "location": {
182
+ "type": "string",
183
+ "description": "The city and state, e.g. San Francisco, CA",
184
+ },
185
+ "format": {
186
+ "type": "string",
187
+ "enum": ["celsius", "fahrenheit"],
188
+ "description": "The temperature unit to use. Infer this from the users location.",
189
+ },
190
+ },
191
+ "required": ["location", "format"],
192
+ },
193
+ )
194
+ )
195
+ ],
196
+ messages=[
197
+ UserMessage(content="What's the weather like today in Paris?"),
198
+ ],
199
+ )
200
+
201
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
202
+
203
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
204
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
205
+
206
+ print(result)
207
+
208
+ Usage in Hugging Face Transformers
209
+
210
+ You can also use Hugging Face transformers library to run inference using various chat templates, or fine-tune the model. Example for inference:
211
+
212
+ from transformers import LlamaTokenizerFast, MistralForCausalLM
213
+ import torch
214
+
215
+ device = "cuda"
216
+ tokenizer = LlamaTokenizerFast.from_pretrained('mistralai/Mistral-Small-Instruct-2409')
217
+ tokenizer.pad_token = tokenizer.eos_token
218
+
219
+ model = MistralForCausalLM.from_pretrained('mistralai/Mistral-Small-Instruct-2409', torch_dtype=torch.bfloat16)
220
+ model = model.to(device)
221
+
222
+ prompt = "How often does the letter r occur in Mistral?"
223
+
224
+ messages = [
225
+ {"role": "user", "content": prompt},
226
+ ]
227
+
228
+ model_input = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(device)
229
+ gen = model.generate(model_input, max_new_tokens=150)
230
+ dec = tokenizer.batch_decode(gen)
231
+ print(dec)
232
+
233
+ And you should obtain
234
+
235
+ <s>
236
+ [INST]
237
+ How often does the letter r occur in Mistral?
238
+ [/INST]
239
+ To determine how often the letter "r" occurs in the word "Mistral,"
240
+ we can simply count the instances of "r" in the word.
241
+ The word "Mistral" is broken down as follows:
242
+ - M
243
+ - i
244
+ - s
245
+ - t
246
+ - r
247
+ - a
248
+ - l
249
+ Counting the "r"s, we find that there is only one "r" in "Mistral."
250
+ Therefore, the letter "r" occurs once in the word "Mistral."
251
+ </s>
252
+
253
+ The Mistral AI Team
254
+
255
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
256
+
257
+ ---
258
  ## Use with llama.cpp
259
  Install llama.cpp through brew (works on Mac and Linux)
260