--- license: apache-2.0 model-index: - name: OpenHermes-2.5-neural-chat-v3-3-Slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.09 name: normalized accuracy - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.2 name: normalized accuracy - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.26 name: accuracy - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.78 - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.16 name: accuracy - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 67.78 name: accuracy --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/x44nNbPTpv0zGTqA1Jb2q.png) # OpenHermes-2.5-neural-chat-v3-3-Slerp This is the model for OpenHermes-2.5-neural-chat-v3-3-Slerp. I used [mergekit](https://github.com/cg123/mergekit) to merge models. # Prompt Templates You can use these prompt templates, but I recommend using ChatML. ### ChatML [(OpenHermes-2.5-Mistral-7B)](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B): ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` ### [neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3): ``` ### System: {system} ### User: {user} ### Assistant: ``` # Yaml Config to reproduce ```yaml slices: - sources: - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [0, 32] - model: Intel/neural-chat-7b-v3-3 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 ``` # Quantizationed versions Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke). ##### GPTQ - [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ) ##### GGUF - [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF) ##### AWQ - [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__OpenHermes-2.5-neural-chat-v3-3-Slerp) | Metric | Value | |-----------------------|---------------------------| | Avg. | 71.38 | | ARC (25-shot) | 68.09 | | HellaSwag (10-shot) | 86.2 | | MMLU (5-shot) | 64.26 | | TruthfulQA (0-shot) | 62.78 | | Winogrande (5-shot) | 79.16 | | GSM8K (5-shot) | 67.78 |