|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.amp.autocast_mode
|
|
import os
|
|
import sys
|
|
import logging
|
|
import warnings
|
|
import argparse
|
|
from PIL import Image
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
from torch import nn
|
|
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
|
|
from typing import List, Union
|
|
|
|
|
|
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
|
VLM_PROMPT = "A descriptive caption for this image:\n"
|
|
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
|
|
CHECKPOINT_PATH = Path("wpkklhc6")
|
|
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
logging.getLogger("transformers").setLevel(logging.ERROR)
|
|
|
|
class ImageAdapter(nn.Module):
|
|
def __init__(self, input_features: int, output_features: int):
|
|
super().__init__()
|
|
self.linear1 = nn.Linear(input_features, output_features)
|
|
self.activation = nn.GELU()
|
|
self.linear2 = nn.Linear(output_features, output_features)
|
|
|
|
def forward(self, vision_outputs: torch.Tensor):
|
|
return self.linear2(self.activation(self.linear1(vision_outputs)))
|
|
|
|
def load_models():
|
|
print("Loading CLIP π")
|
|
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
|
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to("cuda")
|
|
|
|
print("Loading tokenizer πͺ")
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
|
|
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
|
|
|
|
print("Loading LLM π€")
|
|
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16).eval()
|
|
|
|
print("Loading image adapter πΌοΈ")
|
|
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
|
|
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
|
|
image_adapter.eval().to("cuda")
|
|
|
|
return clip_processor, clip_model, tokenizer, text_model, image_adapter
|
|
|
|
@torch.no_grad()
|
|
def stream_chat(input_images: List[Image.Image], batch_size: int, pbar: tqdm, models: tuple) -> List[str]:
|
|
clip_processor, clip_model, tokenizer, text_model, image_adapter = models
|
|
torch.cuda.empty_cache()
|
|
all_captions = []
|
|
|
|
for i in range(0, len(input_images), batch_size):
|
|
batch = input_images[i:i+batch_size]
|
|
|
|
try:
|
|
images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values.to('cuda')
|
|
except ValueError as e:
|
|
print(f"Error processing image batch: {e}")
|
|
print("Skipping this batch and continuing...")
|
|
continue
|
|
|
|
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
|
vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
|
|
image_features = vision_outputs.hidden_states[-2]
|
|
embedded_images = image_adapter(image_features).to(dtype=torch.bfloat16)
|
|
|
|
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
|
|
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
|
|
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)
|
|
|
|
inputs_embeds = torch.cat([
|
|
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
|
embedded_images,
|
|
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
|
], dim=1).to(dtype=torch.bfloat16)
|
|
|
|
input_ids = torch.cat([
|
|
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
|
|
torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
|
|
prompt.expand(embedded_images.shape[0], -1),
|
|
], dim=1).to('cuda')
|
|
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
generate_ids = text_model.generate(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
max_new_tokens=300,
|
|
do_sample=True,
|
|
top_k=10,
|
|
temperature=0.5,
|
|
)
|
|
|
|
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
|
|
|
for ids in generate_ids:
|
|
caption = tokenizer.decode(ids[:-1] if ids[-1] == tokenizer.eos_token_id else ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
|
|
all_captions.append(caption)
|
|
|
|
if pbar:
|
|
pbar.update(len(batch))
|
|
|
|
return all_captions
|
|
|
|
def process_directory(input_dir: Path, output_dir: Path, batch_size: int, models: tuple):
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
|
|
images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
|
|
|
|
if not images_to_process:
|
|
print("No new images to process.")
|
|
return
|
|
|
|
with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
|
|
for i in range(0, len(images_to_process), batch_size):
|
|
batch_files = images_to_process[i:i+batch_size]
|
|
batch_images = [Image.open(f).convert('RGB') for f in batch_files]
|
|
|
|
captions = stream_chat(batch_images, batch_size, pbar, models)
|
|
|
|
for file, caption in zip(batch_files, captions):
|
|
with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
|
|
f.write(caption)
|
|
|
|
for img in batch_images:
|
|
img.close()
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser(description="Process images and generate captions.")
|
|
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
|
|
parser.add_argument("--output", help="Output directory (optional)")
|
|
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
|
|
return parser.parse_args()
|
|
|
|
def main():
|
|
args = parse_arguments()
|
|
input_paths = [Path(input_path) for input_path in args.input]
|
|
batch_size = args.bs
|
|
models = load_models()
|
|
|
|
for input_path in input_paths:
|
|
if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
|
|
output_path = input_path.with_suffix('.txt')
|
|
print(f"Processing single image ποΈ: {input_path.name}")
|
|
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
|
|
captions = stream_chat([Image.open(input_path).convert('RGB')], 1, pbar, models)
|
|
with open(output_path, 'w', encoding='utf-8') as f:
|
|
f.write(captions[0])
|
|
print(f"Output saved to {output_path}")
|
|
elif input_path.is_dir():
|
|
output_path = Path(args.output) if args.output else input_path
|
|
print(f"Processing directory π: {input_path}")
|
|
print(f"Output directory π¦: {output_path}")
|
|
print(f"Batch size ποΈ: {batch_size}")
|
|
process_directory(input_path, output_path, batch_size, models)
|
|
else:
|
|
print(f"Invalid input: {input_path}")
|
|
print("Skipping...")
|
|
|
|
if not input_paths:
|
|
print("Usage:")
|
|
print("For single image: python app.py [image_file] [--bs batch_size]")
|
|
print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
|
|
print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
|
|
print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
|
|
sys.exit(1)
|
|
|
|
if __name__ == "__main__":
|
|
main() |