Create handler.py
Browse files- handler.py +52 -0
handler.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
|
5 |
+
# check for GPU
|
6 |
+
device = 0 if torch.cuda.is_available() else -1
|
7 |
+
|
8 |
+
|
9 |
+
format_input = (
|
10 |
+
"Below is an instruction that describes a task. "
|
11 |
+
"Write a response that appropriately completes the request.\n\n"
|
12 |
+
"### Instruction:\n{instruction}\n\n### Response:"
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class EndpointHandler:
|
17 |
+
def __init__(self, path=""):
|
18 |
+
# load the model
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
path,
|
22 |
+
device_map="auto",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
)
|
25 |
+
# create inference pipeline
|
26 |
+
self.pipeline = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model=model,
|
29 |
+
tokenizer=tokenizer,
|
30 |
+
device=device,
|
31 |
+
max_length=256,
|
32 |
+
)
|
33 |
+
|
34 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
35 |
+
inputs = data.pop("inputs", data)
|
36 |
+
parameters = data.pop("parameters", None)
|
37 |
+
|
38 |
+
text_input = format_input.format(instruction=inputs)
|
39 |
+
|
40 |
+
# pass inputs with all kwargs in data
|
41 |
+
if parameters is not None:
|
42 |
+
prediction = self.pipeline(text_input, **parameters)
|
43 |
+
else:
|
44 |
+
prediction = self.pipeline(text_input)
|
45 |
+
|
46 |
+
# postprocess the prediction
|
47 |
+
output = [
|
48 |
+
{"generated_text": pred["generated_text"].split("### Response:")[1].strip()}
|
49 |
+
for pred in prediction
|
50 |
+
]
|
51 |
+
|
52 |
+
return output
|