Antonio Cheong commited on
Commit
d17239a
1 Parent(s): 27be13e
Files changed (1) hide show
  1. README.md +0 -98
README.md DELETED
@@ -1,98 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- ---
4
- > # Cloned from https://github.com/amazon-science/mm-cot
5
-
6
- # Multimodal Chain-of-Thought Reasoning in Language Models
7
-
8
- <h5 align="center"><i>"Imagine learning a textbook without figures or tables."</i></h5>
9
-
10
- Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output.
11
-
12
- ![](vision_features/mm-cot.png)
13
-
14
-
15
- ## Requirements
16
-
17
- Install all required python dependencies:
18
-
19
- ```
20
- pip install -r requirements.txt
21
- ```
22
-
23
- ## Datasets
24
-
25
- Download the dataset from the following repository:
26
-
27
- ```
28
- https://github.com/lupantech/ScienceQA/tree/main/data
29
- ```
30
-
31
- Download the extracted vision features from [vision_features](https://drive.google.com/file/d/13B0hc_F_45-UlqPLKSgRz-ALtFQ8kIJr/view?usp=share_link) and unzip the files under `vision_features`
32
-
33
- ## Instructions
34
-
35
- ### Training
36
-
37
- ```
38
- # rationale generation
39
- CUDA_VISIBLE_DEVICES=0,1 python main.py \
40
- --model allenai/unifiedqa-t5-base \
41
- --user_msg rationale --img_type detr \
42
- --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
43
- --final_eval --prompt_format QCM-LE
44
-
45
- # answer inference
46
- CUDA_VISIBLE_DEVICES=0,1 python main.py \
47
- --model allenai/unifiedqa-t5-base \
48
- --user_msg answer --img_type detr \
49
- --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
50
- --final_eval --prompt_format QCMG-A \
51
- --eval_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json \
52
- --test_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json
53
- ```
54
-
55
- ### Inference
56
-
57
- Our trained models are available at [models](https://drive.google.com/file/d/1FtTYOJPHnWnFfCxNC6M3gar4RAX5E21b/view?usp=share_link). To use our trained models, please put the them under the ```models``` folder.
58
-
59
- ```
60
- # rationale generation
61
- CUDA_VISIBLE_DEVICES=0,1 python main.py \
62
- --model allenai/unifiedqa-t5-base \
63
- --user_msg rationale --img_type detr \
64
- --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \
65
- --final_eval --prompt_format QCM-LE \
66
- --evaluate_dir models/MM-CoT-UnifiedQA-base-Rationale
67
-
68
- # answer inference
69
- CUDA_VISIBLE_DEVICES=0,1 python main.py \
70
- --model allenai/unifiedqa-t5-base \
71
- --user_msg answer --img_type detr \
72
- --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \
73
- --final_eval --prompt_format QCMG-A \
74
- --eval_le models/rationale/predictions_ans_eval.json \
75
- --test_le models/rationale/predictions_ans_test.json \
76
- --evaluate_dir models/MM-CoT-UnifiedQA-base-Answer
77
- ```
78
-
79
- ## Citing MM-CoT
80
-
81
- ```
82
- @article{zhang2023multicot,
83
- title={Multimodal Chain-of-Thought Reasoning in Language Models},
84
- author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Zhao, Hai and Karypis, George and Smola, Alex},
85
- journal={arXiv preprint arXiv:2302.00923},
86
- year={2023}
87
- }
88
- ```
89
-
90
- ## License
91
-
92
- This project is licensed under the Apache-2.0 License.
93
-
94
- ## Acknowledgement
95
-
96
- Part of our codes are adapted from [ScienceQA](https://github.com/lupantech/ScienceQA) and [Transformers](https://github.com/huggingface/transformers).
97
-
98
- We thank Pan Lu for providing parameter size for ScienceQA baselines.