adamo1139 commited on
Commit
1e97ceb
1 Parent(s): f37db32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -2
README.md CHANGED
@@ -4,7 +4,80 @@ license_name: other
4
  license_link: LICENSE
5
  ---
6
  license for Llama 2 model checkpoints is Llama 2 Community license. \
7
- License for Lumina-T2I 5B checkpoints is Apache-2. \
8
 
9
  In this repo, you will find FP32 (original, un-changed), BF16 and FP16 PTH and FP32, BF16, FP16 safetensor files for Lumina T2I 5B text-to-image model. \
10
- None of the files were confirmed to work yet, I plan to check that later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  license_link: LICENSE
5
  ---
6
  license for Llama 2 model checkpoints is Llama 2 Community license. \
7
+ License for Lumina-T2I 5B checkpoints is Apache-2.
8
 
9
  In this repo, you will find FP32 (original, un-changed), BF16 and FP16 PTH and FP32, BF16, FP16 safetensor files for Lumina T2I 5B text-to-image model. \
10
+ None of the files were confirmed to work yet, I plan to check that later. There could be some code missing in `safetensors` files due to it being removed during conversion, I don't know. If you try to run any of the files, let me know how they work.
11
+
12
+ You can also find un-gated files for Llama 2 7B 4-bit (bnb) and 16-bit. Both are simply copies of those files from unsloth repos. I have not run Lumina locally yet to confirm, but I believe both should work.
13
+
14
+ Script used for converting FP32 pth to FP16 pth
15
+
16
+ ```
17
+ import torch
18
+
19
+ # Load the FP32 model
20
+ fp32_model_path = "consolidated.00-of-01.pth"
21
+ fp32_model = torch.load(fp32_model_path, map_location='cpu')
22
+
23
+ # Convert the model to FP16
24
+ fp16_model = {}
25
+ for key, value in fp32_model.items():
26
+ if isinstance(value, torch.Tensor):
27
+ fp16_model[key] = value.half()
28
+ elif isinstance(value, dict):
29
+ fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
30
+ else:
31
+ fp16_model[key] = value
32
+
33
+ # Save the FP16 model
34
+ fp16_model_path = "consolidated.00-of-01_fp16.pth"
35
+ torch.save(fp16_model, fp16_model_path)
36
+ ```
37
+
38
+ Script used for converting FP32 pth to FP32, BF16, FP16 safetensors and BF16 pth
39
+
40
+ ```
41
+ import torch
42
+ from safetensors.torch import save_file, load_file
43
+
44
+ # Load the FP32 model
45
+ fp32_model_path = "consolidated.00-of-01.pth"
46
+ fp32_model = torch.load(fp32_model_path, map_location='cpu')
47
+
48
+ # Convert the model to BF16
49
+ bf16_model = {}
50
+ for key, value in fp32_model.items():
51
+ if isinstance(value, torch.Tensor):
52
+ bf16_model[key] = value.to(torch.bfloat16)
53
+ elif isinstance(value, dict):
54
+ bf16_model[key] = {k: v.to(torch.bfloat16) if isinstance(v, torch.Tensor) else v for k, v in value.items()}
55
+ else:
56
+ bf16_model[key] = value
57
+
58
+ # Convert the model to FP16
59
+ fp16_model = {}
60
+ for key, value in fp32_model.items():
61
+ if isinstance(value, torch.Tensor):
62
+ fp16_model[key] = value.half()
63
+ elif isinstance(value, dict):
64
+ fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
65
+ else:
66
+ fp16_model[key] = value
67
+
68
+ # Save the FP32 model in safetensors format
69
+ fp32_safetensors_path = "consolidated.00-of-01_fp32.safetensors"
70
+ save_file(fp32_model, fp32_safetensors_path)
71
+
72
+ # Save the BF16 model in safetensors format
73
+ bf16_safetensors_path = "consolidated.00-of-01_bf16.safetensors"
74
+ save_file(bf16_model, bf16_safetensors_path)
75
+
76
+ # Save the FP16 model in safetensors format
77
+ fp16_safetensors_path = "consolidated.00-of-01_fp16.safetensors"
78
+ save_file(fp16_model, fp16_safetensors_path)
79
+
80
+ # Save the BF16 model in .pth format
81
+ bf16_model_path = "consolidated.00-of-01_bf16.pth"
82
+ torch.save(bf16_model, bf16_model_path)
83
+ ```