--- base_model: BAAI/bge-m3 datasets: [] language: - ca library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3755 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: En el cas que la persona beneficiària mantingui les condicions d’elegibilitat es podrà concedir la pròrroga de la prestació sempre que la persona interessada ho sol·liciti i ho permetin les dotacions pressupostàries de cada exercici. sentences: - Quin és el benefici de l'ajut a la consolidació d'empreses? - Quin és el requisit per a la persona beneficiària? - Quin és el benefici del Registre municipal d'entitats per a l'Ajuntament? - source_sentence: Aquest tràmit permet la presentació de les sol·licituds per a l’atorgament de llicències d’aprofitament especial sense transformació del domini públic marítim terrestre consistent en la instal·lació i explotació d'escola per oferir activitats nàutiques, amb zona d’avarada, durant la temporada. sentences: - Quin és el propòsit de la llicència d'aprofitament especial sense transformació del domini públic marítim terrestre? - Quin és el termini per a presentar les sol·licituds de subvencions per a projectes i activitats a entitats de l'àmbit de drets civils? - Quin és el lloc on es realitzen les activitats amb aquest permís? - source_sentence: en cas de compliment dels requisits establerts (persones residents, titulars de plaça d'aparcament, autotaxis, establiments hotelers) sentences: - Quin és el paper de l'administració en la justificació del projecte/activitat subvencionada? - Quin és el benefici de ser un autotaxi? - Quin és el benefici per als establiments de la instal·lació de terrasses o vetlladors? - source_sentence: La convocatòria és el document que estableix les condicions i els requisits per a poder sol·licitar les subvencions pel suport educatiu a les escoles públiques de Sitges. sentences: - Quin és el paper de la convocatòria en les subvencions pel suport educatiu a les escoles públiques de Sitges? - Quin és el benefici de la consulta prèvia de classificació d'activitat per a l'Ajuntament de Sitges? - Quin és el tipus d'ocupació de la via pública que es pot realitzar amb aquest permís? - source_sentence: Cal revisar la informació i els terminis de la convocatòria específica de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges. sentences: - Quin és el document que es necessita per acreditar l'any de construcció i l'adequació a la legalitat urbanística d'un immoble? - Quin és el paper de l'Ajuntament en la gestió de les activitats per temporades? - On es pot trobar la informació sobre els terminis de presentació d'al·legacions en un procés de selecció de personal de l'Ajuntament de Sitges? model-index: - name: BGE SITGES CAT results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.12679425837320574 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21291866028708134 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.30861244019138756 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.49521531100478466 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12679425837320574 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07097288676236044 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06172248803827751 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.049521531100478466 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12679425837320574 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21291866028708134 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.30861244019138756 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.49521531100478466 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.27514703200596163 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.20944786207944124 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23684652150885108 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.11961722488038277 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.20574162679425836 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.31100478468899523 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.49760765550239233 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.11961722488038277 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06858054226475278 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06220095693779904 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04976076555023923 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.11961722488038277 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20574162679425836 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.31100478468899523 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.49760765550239233 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2725409285822112 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2052479684058634 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23218215402287107 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.12440191387559808 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.215311004784689 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.33014354066985646 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5047846889952153 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12440191387559808 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07177033492822966 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.0660287081339713 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.050478468899521525 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12440191387559808 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.215311004784689 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.33014354066985646 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5047846889952153 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2802134368260993 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.21296422875370263 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23912050845024263 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.11961722488038277 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.23205741626794257 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32057416267942584 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.47607655502392343 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.11961722488038277 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07735247208931419 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06411483253588517 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04760765550239234 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.11961722488038277 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.23205741626794257 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.32057416267942584 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.47607655502392343 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2689946292721634 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.20637104123946248 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23511603125214608 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.11961722488038277 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21770334928229665 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3253588516746411 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.11961722488038277 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07256778309409888 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06507177033492824 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.049999999999999996 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.11961722488038277 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21770334928229665 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3253588516746411 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2754707963170229 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.20811498443077409 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23411435647414974 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.1291866028708134 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21291866028708134 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32057416267942584 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.48086124401913877 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1291866028708134 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07097288676236044 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06411483253588518 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04808612440191388 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1291866028708134 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21291866028708134 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.32057416267942584 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.48086124401913877 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2704775725936489 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.20746753246753263 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23395020532132502 name: Cosine Map@100 --- # BGE SITGES CAT This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Language:** ca - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/SITGES-BAAI3") # Run inference sentences = [ "Cal revisar la informació i els terminis de la convocatòria específica de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.", "On es pot trobar la informació sobre els terminis de presentació d'al·legacions en un procés de selecció de personal de l'Ajuntament de Sitges?", "Quin és el document que es necessita per acreditar l'any de construcció i l'adequació a la legalitat urbanística d'un immoble?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1268 | | cosine_accuracy@3 | 0.2129 | | cosine_accuracy@5 | 0.3086 | | cosine_accuracy@10 | 0.4952 | | cosine_precision@1 | 0.1268 | | cosine_precision@3 | 0.071 | | cosine_precision@5 | 0.0617 | | cosine_precision@10 | 0.0495 | | cosine_recall@1 | 0.1268 | | cosine_recall@3 | 0.2129 | | cosine_recall@5 | 0.3086 | | cosine_recall@10 | 0.4952 | | cosine_ndcg@10 | 0.2751 | | cosine_mrr@10 | 0.2094 | | **cosine_map@100** | **0.2368** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1196 | | cosine_accuracy@3 | 0.2057 | | cosine_accuracy@5 | 0.311 | | cosine_accuracy@10 | 0.4976 | | cosine_precision@1 | 0.1196 | | cosine_precision@3 | 0.0686 | | cosine_precision@5 | 0.0622 | | cosine_precision@10 | 0.0498 | | cosine_recall@1 | 0.1196 | | cosine_recall@3 | 0.2057 | | cosine_recall@5 | 0.311 | | cosine_recall@10 | 0.4976 | | cosine_ndcg@10 | 0.2725 | | cosine_mrr@10 | 0.2052 | | **cosine_map@100** | **0.2322** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1244 | | cosine_accuracy@3 | 0.2153 | | cosine_accuracy@5 | 0.3301 | | cosine_accuracy@10 | 0.5048 | | cosine_precision@1 | 0.1244 | | cosine_precision@3 | 0.0718 | | cosine_precision@5 | 0.066 | | cosine_precision@10 | 0.0505 | | cosine_recall@1 | 0.1244 | | cosine_recall@3 | 0.2153 | | cosine_recall@5 | 0.3301 | | cosine_recall@10 | 0.5048 | | cosine_ndcg@10 | 0.2802 | | cosine_mrr@10 | 0.213 | | **cosine_map@100** | **0.2391** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1196 | | cosine_accuracy@3 | 0.2321 | | cosine_accuracy@5 | 0.3206 | | cosine_accuracy@10 | 0.4761 | | cosine_precision@1 | 0.1196 | | cosine_precision@3 | 0.0774 | | cosine_precision@5 | 0.0641 | | cosine_precision@10 | 0.0476 | | cosine_recall@1 | 0.1196 | | cosine_recall@3 | 0.2321 | | cosine_recall@5 | 0.3206 | | cosine_recall@10 | 0.4761 | | cosine_ndcg@10 | 0.269 | | cosine_mrr@10 | 0.2064 | | **cosine_map@100** | **0.2351** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1196 | | cosine_accuracy@3 | 0.2177 | | cosine_accuracy@5 | 0.3254 | | cosine_accuracy@10 | 0.5 | | cosine_precision@1 | 0.1196 | | cosine_precision@3 | 0.0726 | | cosine_precision@5 | 0.0651 | | cosine_precision@10 | 0.05 | | cosine_recall@1 | 0.1196 | | cosine_recall@3 | 0.2177 | | cosine_recall@5 | 0.3254 | | cosine_recall@10 | 0.5 | | cosine_ndcg@10 | 0.2755 | | cosine_mrr@10 | 0.2081 | | **cosine_map@100** | **0.2341** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.1292 | | cosine_accuracy@3 | 0.2129 | | cosine_accuracy@5 | 0.3206 | | cosine_accuracy@10 | 0.4809 | | cosine_precision@1 | 0.1292 | | cosine_precision@3 | 0.071 | | cosine_precision@5 | 0.0641 | | cosine_precision@10 | 0.0481 | | cosine_recall@1 | 0.1292 | | cosine_recall@3 | 0.2129 | | cosine_recall@5 | 0.3206 | | cosine_recall@10 | 0.4809 | | cosine_ndcg@10 | 0.2705 | | cosine_mrr@10 | 0.2075 | | **cosine_map@100** | **0.234** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 6 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 6 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.3404 | 5 | 3.3256 | - | - | - | - | - | - | - | | 0.6809 | 10 | 2.2115 | - | - | - | - | - | - | - | | 0.9532 | 14 | - | 1.2963 | 0.2260 | 0.2148 | 0.2144 | 0.2258 | 0.2069 | 0.2252 | | 1.0213 | 15 | 1.7921 | - | - | - | - | - | - | - | | 1.3617 | 20 | 1.2295 | - | - | - | - | - | - | - | | 1.7021 | 25 | 0.9048 | - | - | - | - | - | - | - | | 1.9745 | 29 | - | 0.8667 | 0.2311 | 0.2267 | 0.2292 | 0.2279 | 0.2121 | 0.2278 | | 2.0426 | 30 | 0.7256 | - | - | - | - | - | - | - | | 2.3830 | 35 | 0.5252 | - | - | - | - | - | - | - | | 2.7234 | 40 | 0.4648 | - | - | - | - | - | - | - | | **2.9957** | **44** | **-** | **0.692** | **0.2311** | **0.2243** | **0.2332** | **0.2319** | **0.2211** | **0.2354** | | 3.0638 | 45 | 0.3518 | - | - | - | - | - | - | - | | 3.4043 | 50 | 0.321 | - | - | - | - | - | - | - | | 3.7447 | 55 | 0.2923 | - | - | - | - | - | - | - | | 3.9489 | 58 | - | 0.6514 | 0.2343 | 0.2210 | 0.2293 | 0.2338 | 0.2242 | 0.2331 | | 4.0851 | 60 | 0.2522 | - | - | - | - | - | - | - | | 4.4255 | 65 | 0.2445 | - | - | - | - | - | - | - | | 4.7660 | 70 | 0.2358 | - | - | - | - | - | - | - | | 4.9702 | 73 | - | 0.6481 | 0.2348 | 0.2239 | 0.2252 | 0.2332 | 0.2167 | 0.2298 | | 5.1064 | 75 | 0.2301 | - | - | - | - | - | - | - | | 5.4468 | 80 | 0.2262 | - | - | - | - | - | - | - | | 5.7191 | 84 | - | 0.6460 | 0.2430 | 0.2308 | 0.2343 | 0.2408 | 0.2212 | 0.2378 | | 0.3404 | 5 | 0.1585 | - | - | - | - | - | - | - | | 0.6809 | 10 | 0.1465 | - | - | - | - | - | - | - | | 0.9532 | 14 | - | 0.6325 | 0.2407 | 0.2255 | 0.2328 | 0.2333 | 0.2266 | 0.2429 | | 1.0213 | 15 | 0.1411 | - | - | - | - | - | - | - | | 1.3617 | 20 | 0.079 | - | - | - | - | - | - | - | | 1.7021 | 25 | 0.1159 | - | - | - | - | - | - | - | | 1.9745 | 29 | - | 0.6772 | 0.2361 | 0.2287 | 0.2252 | 0.2325 | 0.2228 | 0.2387 | | 2.0426 | 30 | 0.0838 | - | - | - | - | - | - | - | | 2.3830 | 35 | 0.0647 | - | - | - | - | - | - | - | | 2.7234 | 40 | 0.0752 | - | - | - | - | - | - | - | | **2.9957** | **44** | **-** | **0.6668** | **0.2304** | **0.2354** | **0.2304** | **0.2344** | **0.2155** | **0.2321** | | 3.0638 | 45 | 0.0706 | - | - | - | - | - | - | - | | 3.4043 | 50 | 0.0478 | - | - | - | - | - | - | - | | 3.7447 | 55 | 0.0768 | - | - | - | - | - | - | - | | 3.9489 | 58 | - | 0.6040 | 0.2318 | 0.2293 | 0.2292 | 0.2305 | 0.2165 | 0.2264 | | 4.0851 | 60 | 0.0793 | - | - | - | - | - | - | - | | 4.4255 | 65 | 0.0559 | - | - | - | - | - | - | - | | 4.7660 | 70 | 0.0654 | - | - | - | - | - | - | - | | 4.9702 | 73 | - | 0.6105 | 0.2328 | 0.2328 | 0.2313 | 0.2364 | 0.2279 | 0.2320 | | 5.1064 | 75 | 0.0734 | - | - | - | - | - | - | - | | 5.4468 | 80 | 0.0616 | - | - | - | - | - | - | - | | 5.7191 | 84 | - | 0.6107 | 0.2368 | 0.2341 | 0.2351 | 0.2391 | 0.2340 | 0.2322 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```