--- language: tr widget: - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı." --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of dbmdz/bert-base-turkish-cased using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/bert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("") # Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. ``` # Reference test results: * accuracy: 0.9933935699477056 * f1: 0.9592969472710453 * precision: 0.9543530277931161 * recall: 0.9642923563325274