Sheshera Mysore commited on
Commit
0bde922
1 Parent(s): a83a9b4

Usage instructions update.

Browse files
Files changed (1) hide show
  1. README.md +1 -15
README.md CHANGED
@@ -39,21 +39,7 @@ This model is trained for document similarity tasks in **biomedical** scientific
39
 
40
  ### How to use
41
 
42
- **`aspire-biencoder-biomed-spec`** model can be used via the `transformers` library:
43
-
44
- ```
45
- from transformers import AutoModel, AutoTokenizer
46
- aspire_bienc = AutoModel.from_pretrained('allenai/aspire-biencoder-biomed-spec')
47
- aspire_tok = AutoTokenizer.from_pretrained('allenai/aspire-biencoder-biomed-spec')
48
- title = "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity"
49
- abstract = "We present a new scientific document similarity model based on matching fine-grained aspects of texts."
50
- d=[title+aspire_tok.sep_token+abstract]
51
- inputs = aspire_tok(d, padding=True, truncation=True, return_tensors="pt", max_length=512)
52
- result = aspire_bienc(**inputs)
53
- clsrep = result.last_hidden_state[:,0,:]
54
- ```
55
-
56
- **`aspire-biencoder-biomed-scib-full`**, can be used as follows: 1) Download the [`aspire-biencoder-biomed-scib-full.zip`](https://drive.google.com/file/d/1MDCv9Fc33eP015HTWKi50WYXixh72h5c/view?usp=sharing), and 2) Use it per this example usage script: [`aspire/examples/ex_aspire_bienc.py`](https://github.com/allenai/aspire/blob/main/examples/ex_aspire_bienc.py)
57
 
58
  ### Variable and metrics
59
  This model is evaluated on information retrieval datasets with document level queries. Here we report performance on RELISH (biomedical/English), and TRECCOVID (biomedical/English). These are detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). These datasets represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts.
 
39
 
40
  ### How to use
41
 
42
+ Follow instructions for use detailed on the model github repo: https://github.com/allenai/aspire#specter-cocite
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  ### Variable and metrics
45
  This model is evaluated on information retrieval datasets with document level queries. Here we report performance on RELISH (biomedical/English), and TRECCOVID (biomedical/English). These are detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). These datasets represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts.