File size: 4,079 Bytes
3273217
 
 
 
 
 
fb9f1fe
ca38aa7
 
 
331737a
 
3273217
 
73d3c22
3273217
 
fb9f1fe
3273217
 
 
 
 
 
 
 
 
1af15e7
3273217
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf98f9
 
 
 
 
3273217
6cf98f9
3273217
 
6cf98f9
 
 
3273217
 
 
 
6cf98f9
 
 
 
 
 
 
 
 
3273217
6cf98f9
 
 
 
 
 
bd2fc47
6cf98f9
 
 
 
 
bd2fc47
6cf98f9
3273217
 
217eaaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- ExLlamaV2
- 5bit
- Mistral
- Mistral-7B
- quantized
- exl2
- 5.0-bpw
---

# Model Card for alokabhishek/Mistral-7B-Instruct-v0.2-5.0-bpw-exl2

<!-- Provide a quick summary of what the model is/does. -->
This repo contains 5-bit quantized (using ExLlamaV2) model Mistral AI_'s Mistral-7B-Instruct-v0.2



## Model Details

- Model creator: [Mistral AI_](https://huggingface.co/mistralai)
- Original model: [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)


### About quantization using ExLlamaV2


- ExLlamaV2 github repo: [ExLlamaV2 github repo](https://github.com/turboderp/exllamav2)



# How to Get Started with the Model

Use the code below to get started with the model.


## How to run from Python code

#### First install the package
```shell
# Install ExLLamaV2
!git clone https://github.com/turboderp/exllamav2
!pip install -e exllamav2
```

#### Import 

```python
from huggingface_hub import login, HfApi, create_repo
from torch import bfloat16
import locale
import torch
import os
```

#### set up variables

```python
# Define the model ID for the desired model
model_id = "alokabhishek/Mistral-7B-Instruct-v0.2-5.0-bpw-exl2"
BPW = 5.0

# define variables
model_name =  model_id.split("/")[-1]

```

#### Download the quantized model
```shell
!git-lfs install
# download the model to loacl directory
!git clone https://{username}:{HF_TOKEN}@huggingface.co/{model_id} {model_name}
```

#### Run Inference on quantized model using 
```shell
# Run model
!python exllamav2/test_inference.py -m {model_name}/ -p "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."
```


```python
import sys, os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from exllamav2 import (
    ExLlamaV2,
    ExLlamaV2Config,
    ExLlamaV2Cache,
    ExLlamaV2Tokenizer,
)

from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler

import time

# Initialize model and cache

model_directory = "/model_path/Mistral-7B-Instruct-v0.2-5.0-bpw-exl2/"
print("Loading model: " + model_directory)

config = ExLlamaV2Config(model_directory)
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
tokenizer = ExLlamaV2Tokenizer(config)

# Initialize generator

generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)

# Generate some text

settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0.85
settings.top_k = 50
settings.top_p = 0.8
settings.token_repetition_penalty = 1.01
settings.disallow_tokens(tokenizer, [tokenizer.eos_token_id])

prompt = "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."

max_new_tokens = 512

generator.warmup()
time_begin = time.time()

output = generator.generate_simple(prompt, settings, max_new_tokens, seed=1234)

time_end = time.time()
time_total = time_end - time_begin

print(output)
print()
print(f"Response generated in {time_total:.2f} seconds")


```

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]


### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]


## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->


#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]


## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]