amaye15 commited on
Commit
cef9fc0
1 Parent(s): 0658c6b

End of training

Browse files
Files changed (7) hide show
  1. README.md +191 -0
  2. config.json +261 -0
  3. config.toml +27 -0
  4. model.safetensors +3 -0
  5. preprocessor_config.json +37 -0
  6. train.ipynb +0 -0
  7. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/siglip-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - stanford-dogs
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: google-siglip-base-patch16-224-batch32-lr0.005-standford-dogs
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: stanford-dogs
21
+ type: stanford-dogs
22
+ config: default
23
+ split: full
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8406219630709426
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8370399997829452
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.8413608553082093
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.837163245644009
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # google-siglip-base-patch16-224-batch32-lr0.005-standford-dogs
44
+
45
+ This model is a fine-tuned version of [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) on the stanford-dogs dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.5144
48
+ - Accuracy: 0.8406
49
+ - F1: 0.8370
50
+ - Precision: 0.8414
51
+ - Recall: 0.8372
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 32
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 4
75
+ - total_train_batch_size: 128
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - training_steps: 1000
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.9299 | 0.0777 | 10 | 4.4830 | 0.0437 | 0.0194 | 0.0268 | 0.0406 |
85
+ | 4.4701 | 0.1553 | 20 | 4.1771 | 0.0897 | 0.0695 | 0.1215 | 0.0872 |
86
+ | 3.925 | 0.2330 | 30 | 3.1443 | 0.2087 | 0.1820 | 0.2840 | 0.2050 |
87
+ | 3.3549 | 0.3107 | 40 | 2.5232 | 0.3494 | 0.3224 | 0.4544 | 0.3458 |
88
+ | 2.8512 | 0.3883 | 50 | 2.1503 | 0.4332 | 0.3991 | 0.5244 | 0.4215 |
89
+ | 2.5846 | 0.4660 | 60 | 1.7744 | 0.5180 | 0.4863 | 0.6052 | 0.5127 |
90
+ | 2.2942 | 0.5437 | 70 | 1.5619 | 0.5437 | 0.5333 | 0.6446 | 0.5421 |
91
+ | 2.1577 | 0.6214 | 80 | 1.5739 | 0.5622 | 0.5452 | 0.6301 | 0.5600 |
92
+ | 1.9423 | 0.6990 | 90 | 1.2747 | 0.6198 | 0.6010 | 0.6840 | 0.6156 |
93
+ | 1.663 | 0.7767 | 100 | 1.3143 | 0.6115 | 0.6013 | 0.7101 | 0.6084 |
94
+ | 1.8093 | 0.8544 | 110 | 1.1125 | 0.6667 | 0.6491 | 0.7107 | 0.6618 |
95
+ | 1.6925 | 0.9320 | 120 | 1.3373 | 0.6110 | 0.5992 | 0.6918 | 0.6074 |
96
+ | 1.7028 | 1.0097 | 130 | 1.0352 | 0.6934 | 0.6810 | 0.7321 | 0.6878 |
97
+ | 1.4451 | 1.0874 | 140 | 0.9891 | 0.7000 | 0.6924 | 0.7438 | 0.6931 |
98
+ | 1.4583 | 1.1650 | 150 | 0.9574 | 0.7153 | 0.7045 | 0.7411 | 0.7120 |
99
+ | 1.4219 | 1.2427 | 160 | 0.9801 | 0.7024 | 0.6929 | 0.7473 | 0.6991 |
100
+ | 1.442 | 1.3204 | 170 | 1.0351 | 0.6829 | 0.6794 | 0.7294 | 0.6780 |
101
+ | 1.3218 | 1.3981 | 180 | 0.9178 | 0.7238 | 0.7196 | 0.7632 | 0.7227 |
102
+ | 1.2486 | 1.4757 | 190 | 0.8521 | 0.7415 | 0.7361 | 0.7669 | 0.7363 |
103
+ | 1.2239 | 1.5534 | 200 | 0.9499 | 0.7046 | 0.6979 | 0.7582 | 0.7027 |
104
+ | 1.2724 | 1.6311 | 210 | 0.9332 | 0.7157 | 0.7050 | 0.7604 | 0.7111 |
105
+ | 1.205 | 1.7087 | 220 | 0.8662 | 0.7391 | 0.7287 | 0.7770 | 0.7349 |
106
+ | 1.2263 | 1.7864 | 230 | 0.8464 | 0.7393 | 0.7302 | 0.7668 | 0.7343 |
107
+ | 1.1301 | 1.8641 | 240 | 0.8417 | 0.7374 | 0.7302 | 0.7795 | 0.7342 |
108
+ | 1.2035 | 1.9417 | 250 | 0.7798 | 0.7629 | 0.7553 | 0.7873 | 0.7600 |
109
+ | 1.1138 | 2.0194 | 260 | 0.8089 | 0.7495 | 0.7368 | 0.7789 | 0.7444 |
110
+ | 0.9266 | 2.0971 | 270 | 0.7645 | 0.7566 | 0.7539 | 0.7864 | 0.7550 |
111
+ | 0.9438 | 2.1748 | 280 | 0.7555 | 0.7653 | 0.7575 | 0.7916 | 0.7609 |
112
+ | 0.9776 | 2.2524 | 290 | 0.7824 | 0.7544 | 0.7494 | 0.7787 | 0.7531 |
113
+ | 0.9083 | 2.3301 | 300 | 0.7687 | 0.7626 | 0.7543 | 0.7914 | 0.7606 |
114
+ | 0.9157 | 2.4078 | 310 | 0.7573 | 0.7682 | 0.7634 | 0.7966 | 0.7637 |
115
+ | 0.9962 | 2.4854 | 320 | 0.7704 | 0.7631 | 0.7539 | 0.7950 | 0.7600 |
116
+ | 0.9313 | 2.5631 | 330 | 0.7552 | 0.7609 | 0.7560 | 0.7879 | 0.7564 |
117
+ | 0.8893 | 2.6408 | 340 | 0.7491 | 0.7655 | 0.7568 | 0.7846 | 0.7621 |
118
+ | 0.9724 | 2.7184 | 350 | 0.7167 | 0.7787 | 0.7721 | 0.7976 | 0.7738 |
119
+ | 0.9045 | 2.7961 | 360 | 0.7067 | 0.7799 | 0.7728 | 0.8082 | 0.7739 |
120
+ | 0.8922 | 2.8738 | 370 | 0.7028 | 0.7799 | 0.7696 | 0.8017 | 0.7745 |
121
+ | 0.9082 | 2.9515 | 380 | 0.6934 | 0.7767 | 0.7716 | 0.7892 | 0.7736 |
122
+ | 0.8438 | 3.0291 | 390 | 0.6680 | 0.7869 | 0.7795 | 0.8068 | 0.7814 |
123
+ | 0.7603 | 3.1068 | 400 | 0.6601 | 0.7918 | 0.7837 | 0.8060 | 0.7871 |
124
+ | 0.6695 | 3.1845 | 410 | 0.6628 | 0.7954 | 0.7881 | 0.8113 | 0.7927 |
125
+ | 0.7315 | 3.2621 | 420 | 0.6564 | 0.7983 | 0.7908 | 0.8113 | 0.7942 |
126
+ | 0.7155 | 3.3398 | 430 | 0.6562 | 0.7906 | 0.7876 | 0.8119 | 0.7866 |
127
+ | 0.7216 | 3.4175 | 440 | 0.6499 | 0.7881 | 0.7828 | 0.8048 | 0.7850 |
128
+ | 0.7167 | 3.4951 | 450 | 0.6440 | 0.7942 | 0.7890 | 0.8073 | 0.7928 |
129
+ | 0.6772 | 3.5728 | 460 | 0.6147 | 0.8064 | 0.8014 | 0.8161 | 0.8021 |
130
+ | 0.7298 | 3.6505 | 470 | 0.6643 | 0.7974 | 0.7942 | 0.8172 | 0.7928 |
131
+ | 0.6712 | 3.7282 | 480 | 0.6114 | 0.8071 | 0.8032 | 0.8182 | 0.8030 |
132
+ | 0.703 | 3.8058 | 490 | 0.6246 | 0.8069 | 0.8011 | 0.8188 | 0.8027 |
133
+ | 0.724 | 3.8835 | 500 | 0.6386 | 0.8022 | 0.7958 | 0.8167 | 0.7980 |
134
+ | 0.6467 | 3.9612 | 510 | 0.6490 | 0.8044 | 0.7981 | 0.8154 | 0.8002 |
135
+ | 0.6781 | 4.0388 | 520 | 0.6296 | 0.8078 | 0.8037 | 0.8208 | 0.8055 |
136
+ | 0.5615 | 4.1165 | 530 | 0.6108 | 0.8117 | 0.8075 | 0.8196 | 0.8091 |
137
+ | 0.5095 | 4.1942 | 540 | 0.6272 | 0.8090 | 0.8045 | 0.8228 | 0.8042 |
138
+ | 0.562 | 4.2718 | 550 | 0.6529 | 0.8008 | 0.7966 | 0.8197 | 0.7965 |
139
+ | 0.5307 | 4.3495 | 560 | 0.6290 | 0.8071 | 0.8036 | 0.8164 | 0.8044 |
140
+ | 0.5428 | 4.4272 | 570 | 0.6033 | 0.8154 | 0.8097 | 0.8221 | 0.8115 |
141
+ | 0.5248 | 4.5049 | 580 | 0.6166 | 0.8141 | 0.8035 | 0.8228 | 0.8094 |
142
+ | 0.5608 | 4.5825 | 590 | 0.6010 | 0.8127 | 0.8061 | 0.8243 | 0.8078 |
143
+ | 0.5151 | 4.6602 | 600 | 0.6155 | 0.8061 | 0.8029 | 0.8231 | 0.8024 |
144
+ | 0.5712 | 4.7379 | 610 | 0.6015 | 0.8134 | 0.8091 | 0.8208 | 0.8093 |
145
+ | 0.564 | 4.8155 | 620 | 0.5740 | 0.8265 | 0.8217 | 0.8344 | 0.8222 |
146
+ | 0.5198 | 4.8932 | 630 | 0.5693 | 0.8239 | 0.8165 | 0.8321 | 0.8186 |
147
+ | 0.4851 | 4.9709 | 640 | 0.5574 | 0.8273 | 0.8225 | 0.8315 | 0.8242 |
148
+ | 0.4428 | 5.0485 | 650 | 0.5711 | 0.8253 | 0.8187 | 0.8331 | 0.8199 |
149
+ | 0.3877 | 5.1262 | 660 | 0.5714 | 0.8234 | 0.8198 | 0.8277 | 0.8210 |
150
+ | 0.4377 | 5.2039 | 670 | 0.5736 | 0.8229 | 0.8168 | 0.8301 | 0.8196 |
151
+ | 0.4056 | 5.2816 | 680 | 0.5670 | 0.8260 | 0.8228 | 0.8365 | 0.8232 |
152
+ | 0.4679 | 5.3592 | 690 | 0.5549 | 0.8297 | 0.8247 | 0.8344 | 0.8267 |
153
+ | 0.3742 | 5.4369 | 700 | 0.5582 | 0.8246 | 0.8188 | 0.8314 | 0.8210 |
154
+ | 0.4215 | 5.5146 | 710 | 0.5588 | 0.8246 | 0.8211 | 0.8305 | 0.8209 |
155
+ | 0.4136 | 5.5922 | 720 | 0.5594 | 0.8202 | 0.8153 | 0.8257 | 0.8160 |
156
+ | 0.4464 | 5.6699 | 730 | 0.5541 | 0.8258 | 0.8216 | 0.8307 | 0.8223 |
157
+ | 0.4684 | 5.7476 | 740 | 0.5477 | 0.8275 | 0.8241 | 0.8326 | 0.8238 |
158
+ | 0.4094 | 5.8252 | 750 | 0.5436 | 0.8287 | 0.8247 | 0.8341 | 0.8257 |
159
+ | 0.3757 | 5.9029 | 760 | 0.5514 | 0.8307 | 0.8258 | 0.8355 | 0.8275 |
160
+ | 0.388 | 5.9806 | 770 | 0.5523 | 0.8285 | 0.8244 | 0.8320 | 0.8254 |
161
+ | 0.3528 | 6.0583 | 780 | 0.5500 | 0.8246 | 0.8195 | 0.8291 | 0.8206 |
162
+ | 0.3466 | 6.1359 | 790 | 0.5358 | 0.8311 | 0.8277 | 0.8335 | 0.8276 |
163
+ | 0.3149 | 6.2136 | 800 | 0.5389 | 0.8326 | 0.8283 | 0.8368 | 0.8286 |
164
+ | 0.3106 | 6.2913 | 810 | 0.5277 | 0.8379 | 0.8344 | 0.8397 | 0.8342 |
165
+ | 0.3226 | 6.3689 | 820 | 0.5399 | 0.8304 | 0.8266 | 0.8339 | 0.8268 |
166
+ | 0.3578 | 6.4466 | 830 | 0.5370 | 0.8328 | 0.8287 | 0.8369 | 0.8287 |
167
+ | 0.348 | 6.5243 | 840 | 0.5371 | 0.8307 | 0.8276 | 0.8340 | 0.8275 |
168
+ | 0.3228 | 6.6019 | 850 | 0.5319 | 0.8338 | 0.8295 | 0.8371 | 0.8306 |
169
+ | 0.3022 | 6.6796 | 860 | 0.5332 | 0.8331 | 0.8295 | 0.8365 | 0.8295 |
170
+ | 0.3311 | 6.7573 | 870 | 0.5314 | 0.8307 | 0.8278 | 0.8329 | 0.8273 |
171
+ | 0.3221 | 6.8350 | 880 | 0.5267 | 0.8358 | 0.8324 | 0.8379 | 0.8322 |
172
+ | 0.3132 | 6.9126 | 890 | 0.5293 | 0.8336 | 0.8293 | 0.8363 | 0.8295 |
173
+ | 0.2821 | 6.9903 | 900 | 0.5279 | 0.8314 | 0.8272 | 0.8342 | 0.8277 |
174
+ | 0.2486 | 7.0680 | 910 | 0.5286 | 0.8326 | 0.8287 | 0.8339 | 0.8291 |
175
+ | 0.2936 | 7.1456 | 920 | 0.5250 | 0.8370 | 0.8330 | 0.8380 | 0.8336 |
176
+ | 0.292 | 7.2233 | 930 | 0.5205 | 0.8392 | 0.8351 | 0.8408 | 0.8353 |
177
+ | 0.2806 | 7.3010 | 940 | 0.5207 | 0.8387 | 0.8349 | 0.8403 | 0.8352 |
178
+ | 0.2406 | 7.3786 | 950 | 0.5148 | 0.8404 | 0.8364 | 0.8406 | 0.8369 |
179
+ | 0.2941 | 7.4563 | 960 | 0.5145 | 0.8404 | 0.8372 | 0.8419 | 0.8372 |
180
+ | 0.2597 | 7.5340 | 970 | 0.5156 | 0.8394 | 0.8358 | 0.8401 | 0.8359 |
181
+ | 0.2534 | 7.6117 | 980 | 0.5157 | 0.8404 | 0.8368 | 0.8410 | 0.8369 |
182
+ | 0.2487 | 7.6893 | 990 | 0.5150 | 0.8401 | 0.8364 | 0.8408 | 0.8366 |
183
+ | 0.2618 | 7.7670 | 1000 | 0.5144 | 0.8406 | 0.8370 | 0.8414 | 0.8372 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.40.2
189
+ - Pytorch 2.3.0
190
+ - Datasets 2.19.1
191
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/siglip-base-patch16-224",
3
+ "architectures": [
4
+ "SiglipForImageClassification"
5
+ ],
6
+ "id2label": {
7
+ "0": "Affenpinscher",
8
+ "1": "Afghan Hound",
9
+ "2": "African Hunting Dog",
10
+ "3": "Airedale",
11
+ "4": "American Staffordshire Terrier",
12
+ "5": "Appenzeller",
13
+ "6": "Australian Terrier",
14
+ "7": "Basenji",
15
+ "8": "Basset",
16
+ "9": "Beagle",
17
+ "10": "Bedlington Terrier",
18
+ "11": "Bernese Mountain Dog",
19
+ "12": "Black And Tan Coonhound",
20
+ "13": "Blenheim Spaniel",
21
+ "14": "Bloodhound",
22
+ "15": "Bluetick",
23
+ "16": "Border Collie",
24
+ "17": "Border Terrier",
25
+ "18": "Borzoi",
26
+ "19": "Boston Bull",
27
+ "20": "Bouvier Des Flandres",
28
+ "21": "Boxer",
29
+ "22": "Brabancon Griffon",
30
+ "23": "Briard",
31
+ "24": "Brittany Spaniel",
32
+ "25": "Bull Mastiff",
33
+ "26": "Cairn",
34
+ "27": "Cardigan",
35
+ "28": "Chesapeake Bay Retriever",
36
+ "29": "Chihuahua",
37
+ "30": "Chow",
38
+ "31": "Clumber",
39
+ "32": "Cocker Spaniel",
40
+ "33": "Collie",
41
+ "34": "Curly Coated Retriever",
42
+ "35": "Dandie Dinmont",
43
+ "36": "Dhole",
44
+ "37": "Dingo",
45
+ "38": "Doberman",
46
+ "39": "English Foxhound",
47
+ "40": "English Setter",
48
+ "41": "English Springer",
49
+ "42": "Entlebucher",
50
+ "43": "Eskimo Dog",
51
+ "44": "Flat Coated Retriever",
52
+ "45": "French Bulldog",
53
+ "46": "German Shepherd",
54
+ "47": "German Short Haired Pointer",
55
+ "48": "Giant Schnauzer",
56
+ "49": "Golden Retriever",
57
+ "50": "Gordon Setter",
58
+ "51": "Great Dane",
59
+ "52": "Great Pyrenees",
60
+ "53": "Greater Swiss Mountain Dog",
61
+ "54": "Groenendael",
62
+ "55": "Ibizan Hound",
63
+ "56": "Irish Setter",
64
+ "57": "Irish Terrier",
65
+ "58": "Irish Water Spaniel",
66
+ "59": "Irish Wolfhound",
67
+ "60": "Italian Greyhound",
68
+ "61": "Japanese Spaniel",
69
+ "62": "Keeshond",
70
+ "63": "Kelpie",
71
+ "64": "Kerry Blue Terrier",
72
+ "65": "Komondor",
73
+ "66": "Kuvasz",
74
+ "67": "Labrador Retriever",
75
+ "68": "Lakeland Terrier",
76
+ "69": "Leonberg",
77
+ "70": "Lhasa",
78
+ "71": "Malamute",
79
+ "72": "Malinois",
80
+ "73": "Maltese Dog",
81
+ "74": "Mexican Hairless",
82
+ "75": "Miniature Pinscher",
83
+ "76": "Miniature Poodle",
84
+ "77": "Miniature Schnauzer",
85
+ "78": "Newfoundland",
86
+ "79": "Norfolk Terrier",
87
+ "80": "Norwegian Elkhound",
88
+ "81": "Norwich Terrier",
89
+ "82": "Old English Sheepdog",
90
+ "83": "Otterhound",
91
+ "84": "Papillon",
92
+ "85": "Pekinese",
93
+ "86": "Pembroke",
94
+ "87": "Pomeranian",
95
+ "88": "Pug",
96
+ "89": "Redbone",
97
+ "90": "Rhodesian Ridgeback",
98
+ "91": "Rottweiler",
99
+ "92": "Saint Bernard",
100
+ "93": "Saluki",
101
+ "94": "Samoyed",
102
+ "95": "Schipperke",
103
+ "96": "Scotch Terrier",
104
+ "97": "Scottish Deerhound",
105
+ "98": "Sealyham Terrier",
106
+ "99": "Shetland Sheepdog",
107
+ "100": "Shih Tzu",
108
+ "101": "Siberian Husky",
109
+ "102": "Silky Terrier",
110
+ "103": "Soft Coated Wheaten Terrier",
111
+ "104": "Staffordshire Bullterrier",
112
+ "105": "Standard Poodle",
113
+ "106": "Standard Schnauzer",
114
+ "107": "Sussex Spaniel",
115
+ "108": "Tibetan Mastiff",
116
+ "109": "Tibetan Terrier",
117
+ "110": "Toy Poodle",
118
+ "111": "Toy Terrier",
119
+ "112": "Vizsla",
120
+ "113": "Walker Hound",
121
+ "114": "Weimaraner",
122
+ "115": "Welsh Springer Spaniel",
123
+ "116": "West Highland White Terrier",
124
+ "117": "Whippet",
125
+ "118": "Wire Haired Fox Terrier",
126
+ "119": "Yorkshire Terrier"
127
+ },
128
+ "initializer_factor": 1.0,
129
+ "label2id": {
130
+ "Affenpinscher": 0,
131
+ "Afghan Hound": 1,
132
+ "African Hunting Dog": 2,
133
+ "Airedale": 3,
134
+ "American Staffordshire Terrier": 4,
135
+ "Appenzeller": 5,
136
+ "Australian Terrier": 6,
137
+ "Basenji": 7,
138
+ "Basset": 8,
139
+ "Beagle": 9,
140
+ "Bedlington Terrier": 10,
141
+ "Bernese Mountain Dog": 11,
142
+ "Black And Tan Coonhound": 12,
143
+ "Blenheim Spaniel": 13,
144
+ "Bloodhound": 14,
145
+ "Bluetick": 15,
146
+ "Border Collie": 16,
147
+ "Border Terrier": 17,
148
+ "Borzoi": 18,
149
+ "Boston Bull": 19,
150
+ "Bouvier Des Flandres": 20,
151
+ "Boxer": 21,
152
+ "Brabancon Griffon": 22,
153
+ "Briard": 23,
154
+ "Brittany Spaniel": 24,
155
+ "Bull Mastiff": 25,
156
+ "Cairn": 26,
157
+ "Cardigan": 27,
158
+ "Chesapeake Bay Retriever": 28,
159
+ "Chihuahua": 29,
160
+ "Chow": 30,
161
+ "Clumber": 31,
162
+ "Cocker Spaniel": 32,
163
+ "Collie": 33,
164
+ "Curly Coated Retriever": 34,
165
+ "Dandie Dinmont": 35,
166
+ "Dhole": 36,
167
+ "Dingo": 37,
168
+ "Doberman": 38,
169
+ "English Foxhound": 39,
170
+ "English Setter": 40,
171
+ "English Springer": 41,
172
+ "Entlebucher": 42,
173
+ "Eskimo Dog": 43,
174
+ "Flat Coated Retriever": 44,
175
+ "French Bulldog": 45,
176
+ "German Shepherd": 46,
177
+ "German Short Haired Pointer": 47,
178
+ "Giant Schnauzer": 48,
179
+ "Golden Retriever": 49,
180
+ "Gordon Setter": 50,
181
+ "Great Dane": 51,
182
+ "Great Pyrenees": 52,
183
+ "Greater Swiss Mountain Dog": 53,
184
+ "Groenendael": 54,
185
+ "Ibizan Hound": 55,
186
+ "Irish Setter": 56,
187
+ "Irish Terrier": 57,
188
+ "Irish Water Spaniel": 58,
189
+ "Irish Wolfhound": 59,
190
+ "Italian Greyhound": 60,
191
+ "Japanese Spaniel": 61,
192
+ "Keeshond": 62,
193
+ "Kelpie": 63,
194
+ "Kerry Blue Terrier": 64,
195
+ "Komondor": 65,
196
+ "Kuvasz": 66,
197
+ "Labrador Retriever": 67,
198
+ "Lakeland Terrier": 68,
199
+ "Leonberg": 69,
200
+ "Lhasa": 70,
201
+ "Malamute": 71,
202
+ "Malinois": 72,
203
+ "Maltese Dog": 73,
204
+ "Mexican Hairless": 74,
205
+ "Miniature Pinscher": 75,
206
+ "Miniature Poodle": 76,
207
+ "Miniature Schnauzer": 77,
208
+ "Newfoundland": 78,
209
+ "Norfolk Terrier": 79,
210
+ "Norwegian Elkhound": 80,
211
+ "Norwich Terrier": 81,
212
+ "Old English Sheepdog": 82,
213
+ "Otterhound": 83,
214
+ "Papillon": 84,
215
+ "Pekinese": 85,
216
+ "Pembroke": 86,
217
+ "Pomeranian": 87,
218
+ "Pug": 88,
219
+ "Redbone": 89,
220
+ "Rhodesian Ridgeback": 90,
221
+ "Rottweiler": 91,
222
+ "Saint Bernard": 92,
223
+ "Saluki": 93,
224
+ "Samoyed": 94,
225
+ "Schipperke": 95,
226
+ "Scotch Terrier": 96,
227
+ "Scottish Deerhound": 97,
228
+ "Sealyham Terrier": 98,
229
+ "Shetland Sheepdog": 99,
230
+ "Shih Tzu": 100,
231
+ "Siberian Husky": 101,
232
+ "Silky Terrier": 102,
233
+ "Soft Coated Wheaten Terrier": 103,
234
+ "Staffordshire Bullterrier": 104,
235
+ "Standard Poodle": 105,
236
+ "Standard Schnauzer": 106,
237
+ "Sussex Spaniel": 107,
238
+ "Tibetan Mastiff": 108,
239
+ "Tibetan Terrier": 109,
240
+ "Toy Poodle": 110,
241
+ "Toy Terrier": 111,
242
+ "Vizsla": 112,
243
+ "Walker Hound": 113,
244
+ "Weimaraner": 114,
245
+ "Welsh Springer Spaniel": 115,
246
+ "West Highland White Terrier": 116,
247
+ "Whippet": 117,
248
+ "Wire Haired Fox Terrier": 118,
249
+ "Yorkshire Terrier": 119
250
+ },
251
+ "model_type": "siglip",
252
+ "problem_type": "single_label_classification",
253
+ "text_config": {
254
+ "model_type": "siglip_text_model"
255
+ },
256
+ "torch_dtype": "float32",
257
+ "transformers_version": "4.40.2",
258
+ "vision_config": {
259
+ "model_type": "siglip_vision_model"
260
+ }
261
+ }
config.toml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [training_args]
2
+ output_dir="/Users/andrewmayes/Openclassroom/CanineNet/code/"
3
+ evaluation_strategy="steps"
4
+ save_strategy="steps"
5
+ learning_rate=5e-5
6
+ #per_device_train_batch_size=32 # 512
7
+ #per_device_eval_batch_size=32 # 512
8
+ # num_train_epochs=5,
9
+ eval_delay=0 # 50
10
+ eval_steps=0.01
11
+ #eval_accumulation_steps
12
+ gradient_accumulation_steps=4
13
+ gradient_checkpointing=true
14
+ optim="adafactor"
15
+ max_steps=1000 # 100
16
+ #logging_dir=""
17
+ #log_level="error"
18
+ load_best_model_at_end=true
19
+ metric_for_best_model="f1"
20
+ greater_is_better=true
21
+ #use_mps_device=true
22
+ logging_steps=0.01
23
+ save_steps=0.01
24
+ #auto_find_batch_size=true
25
+ report_to="mlflow"
26
+ save_total_limit=2
27
+ #hub_model_id="amaye15/SwinV2-Base-Document-Classifier"
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dad239e61801b79bf3b82e4ed993efc8c403be2dadcfeeef45396800c1012393
3
+ size 371930976
preprocessor_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format"
15
+ ],
16
+ "do_normalize": true,
17
+ "do_rescale": true,
18
+ "do_resize": true,
19
+ "image_mean": [
20
+ 0.5,
21
+ 0.5,
22
+ 0.5
23
+ ],
24
+ "image_processor_type": "SiglipImageProcessor",
25
+ "image_std": [
26
+ 0.5,
27
+ 0.5,
28
+ 0.5
29
+ ],
30
+ "processor_class": "SiglipProcessor",
31
+ "resample": 3,
32
+ "rescale_factor": 0.00392156862745098,
33
+ "size": {
34
+ "height": 224,
35
+ "width": 224
36
+ }
37
+ }
train.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24f1016240c1d1936589d86a7277d429cefa1660c376cc392f942fd63cc41c46
3
+ size 5112