amaye15 commited on
Commit
81eed79
1 Parent(s): dde5e29

End of training

Browse files
Files changed (7) hide show
  1. README.md +191 -0
  2. config.json +268 -0
  3. config.toml +27 -0
  4. model.safetensors +3 -0
  5. preprocessor_config.json +36 -0
  6. train.ipynb +0 -0
  7. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - stanford-dogs
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: google-vit-base-patch16-224-batch32-lr5e-05-standford-dogs
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: stanford-dogs
21
+ type: stanford-dogs
22
+ config: default
23
+ split: full
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8865403304178814
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8829055367708631
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.8892817099907323
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.8836513270735221
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # google-vit-base-patch16-224-batch32-lr5e-05-standford-dogs
44
+
45
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the stanford-dogs dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.4497
48
+ - Accuracy: 0.8865
49
+ - F1: 0.8829
50
+ - Precision: 0.8893
51
+ - Recall: 0.8837
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 32
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 4
75
+ - total_train_batch_size: 128
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - training_steps: 1000
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.7916 | 0.0777 | 10 | 4.5904 | 0.0328 | 0.0240 | 0.0321 | 0.0343 |
85
+ | 4.5526 | 0.1553 | 20 | 4.2901 | 0.1118 | 0.0891 | 0.1068 | 0.1134 |
86
+ | 4.2946 | 0.2330 | 30 | 3.9659 | 0.2602 | 0.2124 | 0.2287 | 0.2522 |
87
+ | 3.9673 | 0.3107 | 40 | 3.6288 | 0.4351 | 0.3666 | 0.4093 | 0.4189 |
88
+ | 3.69 | 0.3883 | 50 | 3.3225 | 0.5394 | 0.4751 | 0.5232 | 0.5244 |
89
+ | 3.4705 | 0.4660 | 60 | 3.0343 | 0.6261 | 0.5750 | 0.6563 | 0.6139 |
90
+ | 3.2239 | 0.5437 | 70 | 2.7671 | 0.6842 | 0.6503 | 0.7272 | 0.6743 |
91
+ | 2.9986 | 0.6214 | 80 | 2.5191 | 0.7262 | 0.6971 | 0.7601 | 0.7161 |
92
+ | 2.7575 | 0.6990 | 90 | 2.2953 | 0.7430 | 0.7162 | 0.7735 | 0.7333 |
93
+ | 2.5923 | 0.7767 | 100 | 2.1008 | 0.7694 | 0.7470 | 0.7956 | 0.7600 |
94
+ | 2.4265 | 0.8544 | 110 | 1.9250 | 0.7949 | 0.7762 | 0.8094 | 0.7863 |
95
+ | 2.3049 | 0.9320 | 120 | 1.7636 | 0.8054 | 0.7861 | 0.8173 | 0.7971 |
96
+ | 2.1243 | 1.0097 | 130 | 1.6290 | 0.8200 | 0.8056 | 0.8382 | 0.8125 |
97
+ | 1.9721 | 1.0874 | 140 | 1.5121 | 0.8226 | 0.8084 | 0.8396 | 0.8149 |
98
+ | 1.848 | 1.1650 | 150 | 1.4282 | 0.8163 | 0.8002 | 0.8362 | 0.8083 |
99
+ | 1.775 | 1.2427 | 160 | 1.3034 | 0.8304 | 0.8171 | 0.8438 | 0.8238 |
100
+ | 1.717 | 1.3204 | 170 | 1.2343 | 0.8275 | 0.8126 | 0.8460 | 0.8207 |
101
+ | 1.6203 | 1.3981 | 180 | 1.1554 | 0.8387 | 0.8259 | 0.8552 | 0.8323 |
102
+ | 1.5739 | 1.4757 | 190 | 1.0944 | 0.8484 | 0.8384 | 0.8593 | 0.8420 |
103
+ | 1.5508 | 1.5534 | 200 | 1.0400 | 0.8484 | 0.8394 | 0.8574 | 0.8431 |
104
+ | 1.4549 | 1.6311 | 210 | 0.9943 | 0.8452 | 0.8340 | 0.8497 | 0.8399 |
105
+ | 1.3907 | 1.7087 | 220 | 0.9427 | 0.8596 | 0.8480 | 0.8627 | 0.8542 |
106
+ | 1.3497 | 1.7864 | 230 | 0.8936 | 0.8569 | 0.8461 | 0.8647 | 0.8516 |
107
+ | 1.2618 | 1.8641 | 240 | 0.8619 | 0.8613 | 0.8503 | 0.8671 | 0.8560 |
108
+ | 1.3014 | 1.9417 | 250 | 0.8324 | 0.8603 | 0.8508 | 0.8737 | 0.8553 |
109
+ | 1.2209 | 2.0194 | 260 | 0.8015 | 0.8591 | 0.8503 | 0.8645 | 0.8537 |
110
+ | 1.2139 | 2.0971 | 270 | 0.7824 | 0.8596 | 0.8517 | 0.8656 | 0.8544 |
111
+ | 1.1364 | 2.1748 | 280 | 0.7544 | 0.8603 | 0.8513 | 0.8611 | 0.8556 |
112
+ | 1.1811 | 2.2524 | 290 | 0.7283 | 0.8683 | 0.8605 | 0.8785 | 0.8637 |
113
+ | 1.1316 | 2.3301 | 300 | 0.7169 | 0.8635 | 0.8550 | 0.8653 | 0.8590 |
114
+ | 1.1246 | 2.4078 | 310 | 0.6900 | 0.8686 | 0.8610 | 0.8739 | 0.8645 |
115
+ | 1.1027 | 2.4854 | 320 | 0.6862 | 0.8627 | 0.8548 | 0.8730 | 0.8582 |
116
+ | 1.0911 | 2.5631 | 330 | 0.6667 | 0.8693 | 0.8632 | 0.8730 | 0.8653 |
117
+ | 1.0158 | 2.6408 | 340 | 0.6544 | 0.8695 | 0.8628 | 0.8751 | 0.8651 |
118
+ | 1.0805 | 2.7184 | 350 | 0.6342 | 0.8703 | 0.8634 | 0.8733 | 0.8663 |
119
+ | 1.0679 | 2.7961 | 360 | 0.6276 | 0.8754 | 0.8689 | 0.8797 | 0.8713 |
120
+ | 1.0611 | 2.8738 | 370 | 0.6223 | 0.8746 | 0.8692 | 0.8807 | 0.8705 |
121
+ | 0.9996 | 2.9515 | 380 | 0.6055 | 0.8724 | 0.8661 | 0.8758 | 0.8683 |
122
+ | 1.0838 | 3.0291 | 390 | 0.6039 | 0.8715 | 0.8652 | 0.8769 | 0.8677 |
123
+ | 0.9396 | 3.1068 | 400 | 0.5946 | 0.8737 | 0.8676 | 0.8791 | 0.8699 |
124
+ | 0.8466 | 3.1845 | 410 | 0.5810 | 0.8717 | 0.8653 | 0.8775 | 0.8673 |
125
+ | 0.9588 | 3.2621 | 420 | 0.5819 | 0.8710 | 0.8651 | 0.8766 | 0.8671 |
126
+ | 0.9784 | 3.3398 | 430 | 0.5742 | 0.8754 | 0.8684 | 0.8788 | 0.8716 |
127
+ | 0.9289 | 3.4175 | 440 | 0.5667 | 0.8768 | 0.8703 | 0.8792 | 0.8731 |
128
+ | 0.8917 | 3.4951 | 450 | 0.5615 | 0.8724 | 0.8672 | 0.8762 | 0.8690 |
129
+ | 0.8646 | 3.5728 | 460 | 0.5537 | 0.8737 | 0.8681 | 0.8761 | 0.8702 |
130
+ | 0.9029 | 3.6505 | 470 | 0.5538 | 0.8732 | 0.8694 | 0.8771 | 0.8698 |
131
+ | 0.9551 | 3.7282 | 480 | 0.5440 | 0.8766 | 0.8720 | 0.8809 | 0.8735 |
132
+ | 0.8787 | 3.8058 | 490 | 0.5448 | 0.8751 | 0.8704 | 0.8791 | 0.8712 |
133
+ | 0.9128 | 3.8835 | 500 | 0.5354 | 0.8751 | 0.8701 | 0.8799 | 0.8712 |
134
+ | 0.8566 | 3.9612 | 510 | 0.5262 | 0.8776 | 0.8715 | 0.8846 | 0.8738 |
135
+ | 0.8624 | 4.0388 | 520 | 0.5252 | 0.8754 | 0.8692 | 0.8840 | 0.8715 |
136
+ | 0.799 | 4.1165 | 530 | 0.5197 | 0.8763 | 0.8702 | 0.8817 | 0.8723 |
137
+ | 0.7912 | 4.1942 | 540 | 0.5213 | 0.8751 | 0.8695 | 0.8815 | 0.8709 |
138
+ | 0.874 | 4.2718 | 550 | 0.5142 | 0.8778 | 0.8730 | 0.8862 | 0.8742 |
139
+ | 0.766 | 4.3495 | 560 | 0.5019 | 0.8817 | 0.8770 | 0.8864 | 0.8783 |
140
+ | 0.8902 | 4.4272 | 570 | 0.5011 | 0.8831 | 0.8785 | 0.8887 | 0.8798 |
141
+ | 0.8038 | 4.5049 | 580 | 0.5014 | 0.8800 | 0.8742 | 0.8878 | 0.8762 |
142
+ | 0.8893 | 4.5825 | 590 | 0.5062 | 0.8797 | 0.8744 | 0.8851 | 0.8759 |
143
+ | 0.7868 | 4.6602 | 600 | 0.4926 | 0.8827 | 0.8785 | 0.8867 | 0.8791 |
144
+ | 0.7733 | 4.7379 | 610 | 0.4957 | 0.8783 | 0.8749 | 0.8816 | 0.8755 |
145
+ | 0.8275 | 4.8155 | 620 | 0.4871 | 0.8817 | 0.8781 | 0.8847 | 0.8785 |
146
+ | 0.7944 | 4.8932 | 630 | 0.4855 | 0.8858 | 0.8823 | 0.8880 | 0.8829 |
147
+ | 0.8483 | 4.9709 | 640 | 0.4849 | 0.8836 | 0.8797 | 0.8858 | 0.8803 |
148
+ | 0.7297 | 5.0485 | 650 | 0.4833 | 0.8814 | 0.8779 | 0.8845 | 0.8784 |
149
+ | 0.754 | 5.1262 | 660 | 0.4824 | 0.8814 | 0.8775 | 0.8844 | 0.8782 |
150
+ | 0.698 | 5.2039 | 670 | 0.4806 | 0.8851 | 0.8818 | 0.8878 | 0.8821 |
151
+ | 0.7515 | 5.2816 | 680 | 0.4777 | 0.8824 | 0.8791 | 0.8855 | 0.8796 |
152
+ | 0.7527 | 5.3592 | 690 | 0.4711 | 0.8841 | 0.8806 | 0.8869 | 0.8808 |
153
+ | 0.7287 | 5.4369 | 700 | 0.4718 | 0.8853 | 0.8819 | 0.8873 | 0.8824 |
154
+ | 0.8134 | 5.5146 | 710 | 0.4680 | 0.8856 | 0.8826 | 0.8885 | 0.8828 |
155
+ | 0.7655 | 5.5922 | 720 | 0.4688 | 0.8836 | 0.8795 | 0.8862 | 0.8800 |
156
+ | 0.7904 | 5.6699 | 730 | 0.4671 | 0.8878 | 0.8841 | 0.8901 | 0.8846 |
157
+ | 0.7257 | 5.7476 | 740 | 0.4704 | 0.8824 | 0.8790 | 0.8872 | 0.8796 |
158
+ | 0.7342 | 5.8252 | 750 | 0.4641 | 0.8841 | 0.8802 | 0.8889 | 0.8810 |
159
+ | 0.7075 | 5.9029 | 760 | 0.4654 | 0.8824 | 0.8782 | 0.8865 | 0.8791 |
160
+ | 0.7924 | 5.9806 | 770 | 0.4619 | 0.8868 | 0.8829 | 0.8899 | 0.8839 |
161
+ | 0.7176 | 6.0583 | 780 | 0.4597 | 0.8861 | 0.8815 | 0.8889 | 0.8829 |
162
+ | 0.6768 | 6.1359 | 790 | 0.4595 | 0.8858 | 0.8820 | 0.8910 | 0.8827 |
163
+ | 0.722 | 6.2136 | 800 | 0.4605 | 0.8836 | 0.8796 | 0.8882 | 0.8803 |
164
+ | 0.7429 | 6.2913 | 810 | 0.4594 | 0.8865 | 0.8823 | 0.8912 | 0.8833 |
165
+ | 0.6904 | 6.3689 | 820 | 0.4611 | 0.8856 | 0.8821 | 0.8892 | 0.8825 |
166
+ | 0.7617 | 6.4466 | 830 | 0.4592 | 0.8856 | 0.8816 | 0.8879 | 0.8826 |
167
+ | 0.7285 | 6.5243 | 840 | 0.4576 | 0.8863 | 0.8822 | 0.8895 | 0.8832 |
168
+ | 0.686 | 6.6019 | 850 | 0.4561 | 0.8875 | 0.8834 | 0.8923 | 0.8844 |
169
+ | 0.6546 | 6.6796 | 860 | 0.4561 | 0.8865 | 0.8824 | 0.8903 | 0.8835 |
170
+ | 0.6526 | 6.7573 | 870 | 0.4543 | 0.8875 | 0.8830 | 0.8917 | 0.8844 |
171
+ | 0.7534 | 6.8350 | 880 | 0.4537 | 0.8885 | 0.8845 | 0.8927 | 0.8855 |
172
+ | 0.7065 | 6.9126 | 890 | 0.4535 | 0.8870 | 0.8831 | 0.8912 | 0.8841 |
173
+ | 0.774 | 6.9903 | 900 | 0.4528 | 0.8878 | 0.8842 | 0.8924 | 0.8849 |
174
+ | 0.7185 | 7.0680 | 910 | 0.4516 | 0.8880 | 0.8840 | 0.8913 | 0.8849 |
175
+ | 0.6321 | 7.1456 | 920 | 0.4526 | 0.8868 | 0.8830 | 0.8900 | 0.8838 |
176
+ | 0.6957 | 7.2233 | 930 | 0.4517 | 0.8865 | 0.8825 | 0.8901 | 0.8834 |
177
+ | 0.6774 | 7.3010 | 940 | 0.4523 | 0.8863 | 0.8823 | 0.8895 | 0.8833 |
178
+ | 0.6915 | 7.3786 | 950 | 0.4528 | 0.8853 | 0.8814 | 0.8890 | 0.8822 |
179
+ | 0.6738 | 7.4563 | 960 | 0.4520 | 0.8868 | 0.8829 | 0.8901 | 0.8838 |
180
+ | 0.7021 | 7.5340 | 970 | 0.4510 | 0.8863 | 0.8826 | 0.8897 | 0.8834 |
181
+ | 0.7053 | 7.6117 | 980 | 0.4501 | 0.8863 | 0.8827 | 0.8885 | 0.8835 |
182
+ | 0.7241 | 7.6893 | 990 | 0.4498 | 0.8865 | 0.8829 | 0.8893 | 0.8837 |
183
+ | 0.703 | 7.7670 | 1000 | 0.4497 | 0.8865 | 0.8829 | 0.8893 | 0.8837 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.40.2
189
+ - Pytorch 2.3.0
190
+ - Datasets 2.19.1
191
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "Affenpinscher",
13
+ "1": "Afghan Hound",
14
+ "2": "African Hunting Dog",
15
+ "3": "Airedale",
16
+ "4": "American Staffordshire Terrier",
17
+ "5": "Appenzeller",
18
+ "6": "Australian Terrier",
19
+ "7": "Basenji",
20
+ "8": "Basset",
21
+ "9": "Beagle",
22
+ "10": "Bedlington Terrier",
23
+ "11": "Bernese Mountain Dog",
24
+ "12": "Black And Tan Coonhound",
25
+ "13": "Blenheim Spaniel",
26
+ "14": "Bloodhound",
27
+ "15": "Bluetick",
28
+ "16": "Border Collie",
29
+ "17": "Border Terrier",
30
+ "18": "Borzoi",
31
+ "19": "Boston Bull",
32
+ "20": "Bouvier Des Flandres",
33
+ "21": "Boxer",
34
+ "22": "Brabancon Griffon",
35
+ "23": "Briard",
36
+ "24": "Brittany Spaniel",
37
+ "25": "Bull Mastiff",
38
+ "26": "Cairn",
39
+ "27": "Cardigan",
40
+ "28": "Chesapeake Bay Retriever",
41
+ "29": "Chihuahua",
42
+ "30": "Chow",
43
+ "31": "Clumber",
44
+ "32": "Cocker Spaniel",
45
+ "33": "Collie",
46
+ "34": "Curly Coated Retriever",
47
+ "35": "Dandie Dinmont",
48
+ "36": "Dhole",
49
+ "37": "Dingo",
50
+ "38": "Doberman",
51
+ "39": "English Foxhound",
52
+ "40": "English Setter",
53
+ "41": "English Springer",
54
+ "42": "Entlebucher",
55
+ "43": "Eskimo Dog",
56
+ "44": "Flat Coated Retriever",
57
+ "45": "French Bulldog",
58
+ "46": "German Shepherd",
59
+ "47": "German Short Haired Pointer",
60
+ "48": "Giant Schnauzer",
61
+ "49": "Golden Retriever",
62
+ "50": "Gordon Setter",
63
+ "51": "Great Dane",
64
+ "52": "Great Pyrenees",
65
+ "53": "Greater Swiss Mountain Dog",
66
+ "54": "Groenendael",
67
+ "55": "Ibizan Hound",
68
+ "56": "Irish Setter",
69
+ "57": "Irish Terrier",
70
+ "58": "Irish Water Spaniel",
71
+ "59": "Irish Wolfhound",
72
+ "60": "Italian Greyhound",
73
+ "61": "Japanese Spaniel",
74
+ "62": "Keeshond",
75
+ "63": "Kelpie",
76
+ "64": "Kerry Blue Terrier",
77
+ "65": "Komondor",
78
+ "66": "Kuvasz",
79
+ "67": "Labrador Retriever",
80
+ "68": "Lakeland Terrier",
81
+ "69": "Leonberg",
82
+ "70": "Lhasa",
83
+ "71": "Malamute",
84
+ "72": "Malinois",
85
+ "73": "Maltese Dog",
86
+ "74": "Mexican Hairless",
87
+ "75": "Miniature Pinscher",
88
+ "76": "Miniature Poodle",
89
+ "77": "Miniature Schnauzer",
90
+ "78": "Newfoundland",
91
+ "79": "Norfolk Terrier",
92
+ "80": "Norwegian Elkhound",
93
+ "81": "Norwich Terrier",
94
+ "82": "Old English Sheepdog",
95
+ "83": "Otterhound",
96
+ "84": "Papillon",
97
+ "85": "Pekinese",
98
+ "86": "Pembroke",
99
+ "87": "Pomeranian",
100
+ "88": "Pug",
101
+ "89": "Redbone",
102
+ "90": "Rhodesian Ridgeback",
103
+ "91": "Rottweiler",
104
+ "92": "Saint Bernard",
105
+ "93": "Saluki",
106
+ "94": "Samoyed",
107
+ "95": "Schipperke",
108
+ "96": "Scotch Terrier",
109
+ "97": "Scottish Deerhound",
110
+ "98": "Sealyham Terrier",
111
+ "99": "Shetland Sheepdog",
112
+ "100": "Shih Tzu",
113
+ "101": "Siberian Husky",
114
+ "102": "Silky Terrier",
115
+ "103": "Soft Coated Wheaten Terrier",
116
+ "104": "Staffordshire Bullterrier",
117
+ "105": "Standard Poodle",
118
+ "106": "Standard Schnauzer",
119
+ "107": "Sussex Spaniel",
120
+ "108": "Tibetan Mastiff",
121
+ "109": "Tibetan Terrier",
122
+ "110": "Toy Poodle",
123
+ "111": "Toy Terrier",
124
+ "112": "Vizsla",
125
+ "113": "Walker Hound",
126
+ "114": "Weimaraner",
127
+ "115": "Welsh Springer Spaniel",
128
+ "116": "West Highland White Terrier",
129
+ "117": "Whippet",
130
+ "118": "Wire Haired Fox Terrier",
131
+ "119": "Yorkshire Terrier"
132
+ },
133
+ "image_size": 224,
134
+ "initializer_range": 0.02,
135
+ "intermediate_size": 3072,
136
+ "label2id": {
137
+ "Affenpinscher": 0,
138
+ "Afghan Hound": 1,
139
+ "African Hunting Dog": 2,
140
+ "Airedale": 3,
141
+ "American Staffordshire Terrier": 4,
142
+ "Appenzeller": 5,
143
+ "Australian Terrier": 6,
144
+ "Basenji": 7,
145
+ "Basset": 8,
146
+ "Beagle": 9,
147
+ "Bedlington Terrier": 10,
148
+ "Bernese Mountain Dog": 11,
149
+ "Black And Tan Coonhound": 12,
150
+ "Blenheim Spaniel": 13,
151
+ "Bloodhound": 14,
152
+ "Bluetick": 15,
153
+ "Border Collie": 16,
154
+ "Border Terrier": 17,
155
+ "Borzoi": 18,
156
+ "Boston Bull": 19,
157
+ "Bouvier Des Flandres": 20,
158
+ "Boxer": 21,
159
+ "Brabancon Griffon": 22,
160
+ "Briard": 23,
161
+ "Brittany Spaniel": 24,
162
+ "Bull Mastiff": 25,
163
+ "Cairn": 26,
164
+ "Cardigan": 27,
165
+ "Chesapeake Bay Retriever": 28,
166
+ "Chihuahua": 29,
167
+ "Chow": 30,
168
+ "Clumber": 31,
169
+ "Cocker Spaniel": 32,
170
+ "Collie": 33,
171
+ "Curly Coated Retriever": 34,
172
+ "Dandie Dinmont": 35,
173
+ "Dhole": 36,
174
+ "Dingo": 37,
175
+ "Doberman": 38,
176
+ "English Foxhound": 39,
177
+ "English Setter": 40,
178
+ "English Springer": 41,
179
+ "Entlebucher": 42,
180
+ "Eskimo Dog": 43,
181
+ "Flat Coated Retriever": 44,
182
+ "French Bulldog": 45,
183
+ "German Shepherd": 46,
184
+ "German Short Haired Pointer": 47,
185
+ "Giant Schnauzer": 48,
186
+ "Golden Retriever": 49,
187
+ "Gordon Setter": 50,
188
+ "Great Dane": 51,
189
+ "Great Pyrenees": 52,
190
+ "Greater Swiss Mountain Dog": 53,
191
+ "Groenendael": 54,
192
+ "Ibizan Hound": 55,
193
+ "Irish Setter": 56,
194
+ "Irish Terrier": 57,
195
+ "Irish Water Spaniel": 58,
196
+ "Irish Wolfhound": 59,
197
+ "Italian Greyhound": 60,
198
+ "Japanese Spaniel": 61,
199
+ "Keeshond": 62,
200
+ "Kelpie": 63,
201
+ "Kerry Blue Terrier": 64,
202
+ "Komondor": 65,
203
+ "Kuvasz": 66,
204
+ "Labrador Retriever": 67,
205
+ "Lakeland Terrier": 68,
206
+ "Leonberg": 69,
207
+ "Lhasa": 70,
208
+ "Malamute": 71,
209
+ "Malinois": 72,
210
+ "Maltese Dog": 73,
211
+ "Mexican Hairless": 74,
212
+ "Miniature Pinscher": 75,
213
+ "Miniature Poodle": 76,
214
+ "Miniature Schnauzer": 77,
215
+ "Newfoundland": 78,
216
+ "Norfolk Terrier": 79,
217
+ "Norwegian Elkhound": 80,
218
+ "Norwich Terrier": 81,
219
+ "Old English Sheepdog": 82,
220
+ "Otterhound": 83,
221
+ "Papillon": 84,
222
+ "Pekinese": 85,
223
+ "Pembroke": 86,
224
+ "Pomeranian": 87,
225
+ "Pug": 88,
226
+ "Redbone": 89,
227
+ "Rhodesian Ridgeback": 90,
228
+ "Rottweiler": 91,
229
+ "Saint Bernard": 92,
230
+ "Saluki": 93,
231
+ "Samoyed": 94,
232
+ "Schipperke": 95,
233
+ "Scotch Terrier": 96,
234
+ "Scottish Deerhound": 97,
235
+ "Sealyham Terrier": 98,
236
+ "Shetland Sheepdog": 99,
237
+ "Shih Tzu": 100,
238
+ "Siberian Husky": 101,
239
+ "Silky Terrier": 102,
240
+ "Soft Coated Wheaten Terrier": 103,
241
+ "Staffordshire Bullterrier": 104,
242
+ "Standard Poodle": 105,
243
+ "Standard Schnauzer": 106,
244
+ "Sussex Spaniel": 107,
245
+ "Tibetan Mastiff": 108,
246
+ "Tibetan Terrier": 109,
247
+ "Toy Poodle": 110,
248
+ "Toy Terrier": 111,
249
+ "Vizsla": 112,
250
+ "Walker Hound": 113,
251
+ "Weimaraner": 114,
252
+ "Welsh Springer Spaniel": 115,
253
+ "West Highland White Terrier": 116,
254
+ "Whippet": 117,
255
+ "Wire Haired Fox Terrier": 118,
256
+ "Yorkshire Terrier": 119
257
+ },
258
+ "layer_norm_eps": 1e-12,
259
+ "model_type": "vit",
260
+ "num_attention_heads": 12,
261
+ "num_channels": 3,
262
+ "num_hidden_layers": 12,
263
+ "patch_size": 16,
264
+ "problem_type": "single_label_classification",
265
+ "qkv_bias": true,
266
+ "torch_dtype": "float32",
267
+ "transformers_version": "4.40.2"
268
+ }
config.toml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [training_args]
2
+ output_dir="/Users/andrewmayes/Openclassroom/CanineNet/code/"
3
+ evaluation_strategy="steps"
4
+ save_strategy="steps"
5
+ learning_rate=5e-5
6
+ #per_device_train_batch_size=32 # 512
7
+ #per_device_eval_batch_size=32 # 512
8
+ # num_train_epochs=5,
9
+ eval_delay=0 # 50
10
+ eval_steps=0.01
11
+ #eval_accumulation_steps
12
+ gradient_accumulation_steps=4
13
+ gradient_checkpointing=true
14
+ optim="adafactor"
15
+ max_steps=1000 # 100
16
+ #logging_dir=""
17
+ #log_level="error"
18
+ load_best_model_at_end=true
19
+ metric_for_best_model="f1"
20
+ greater_is_better=true
21
+ #use_mps_device=true
22
+ logging_steps=0.01
23
+ save_steps=0.01
24
+ #auto_find_batch_size=true
25
+ report_to="mlflow"
26
+ save_total_limit=2
27
+ #hub_model_id="amaye15/SwinV2-Base-Document-Classifier"
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fce687c74a59523ff91a72290d69b028ec25130a4d52172436f67f1c4c49b89
3
+ size 343586952
preprocessor_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format"
15
+ ],
16
+ "do_normalize": true,
17
+ "do_rescale": true,
18
+ "do_resize": true,
19
+ "image_mean": [
20
+ 0.5,
21
+ 0.5,
22
+ 0.5
23
+ ],
24
+ "image_processor_type": "ViTImageProcessor",
25
+ "image_std": [
26
+ 0.5,
27
+ 0.5,
28
+ 0.5
29
+ ],
30
+ "resample": 2,
31
+ "rescale_factor": 0.00392156862745098,
32
+ "size": {
33
+ "height": 224,
34
+ "width": 224
35
+ }
36
+ }
train.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90b7ad26803e9537f458be67001320104e28aeae19046ed6a9807527a1838748
3
+ size 5112