gnovack-amzn commited on
Commit
a2b7e77
1 Parent(s): f312c15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -6794,9 +6794,9 @@ model-index:
6794
  ---
6795
 
6796
  ## Bedrock Titan Text Embeddings v2
6797
- This repository contains the MTEB scores and usage examples of Bedrock Titan Text Embeddings v2. You can use the embedding model either via the Bedrock streaming API or via Bedrock's batch jobs. For RAG use cases we recommend the former to embed queries during search (latency optimized) and the latter to index corpus (throughput optimized).
6798
 
6799
- ## Using Bedrock's streaming API
6800
 
6801
  ```python
6802
  import json
@@ -6805,7 +6805,7 @@ class TitanEmbeddings(object):
6805
  accept = "application/json"
6806
  content_type = "application/json"
6807
 
6808
- def __init__(self, model_id="amazon.titan-embed-text-v2"):
6809
  self.bedrock = boto3.client(service_name='bedrock-runtime')
6810
  self.model_id = model_id
6811
  def __call__(self, text, dimensions, normalize=True):
@@ -6837,7 +6837,7 @@ if __name__ == '__main__':
6837
  dimensions = 1024
6838
  normalize = True
6839
 
6840
- titan_embeddings_v2 = TitanEmbeddings(model_id="amazon.titan-embed-text-v2")
6841
 
6842
  input_text = "What are the different services that you offer?"
6843
  embedding = titan_embeddings_v2(input_text, dimensions, normalize)
@@ -6870,7 +6870,7 @@ payload = {
6870
  }
6871
  },
6872
  "jobName": "embeddings-v2-batch-job",
6873
- "modelId": "amazon.titan-embed-text-v2",
6874
  "outputDataConfig": {
6875
  "s3OutputDataConfig": {
6876
  "s3Uri": "s3://my-output-bucket/batch-output/"
 
6794
  ---
6795
 
6796
  ## Bedrock Titan Text Embeddings v2
6797
+ This repository contains the MTEB scores and usage examples of Bedrock Titan Text Embeddings v2. You can use the embedding model either via the Bedrock InvokeModel API or via Bedrock's batch jobs. For RAG use cases we recommend the former to embed queries during search (latency optimized) and the latter to index corpus (throughput optimized).
6798
 
6799
+ ## Using Bedrock's InvokeModel API
6800
 
6801
  ```python
6802
  import json
 
6805
  accept = "application/json"
6806
  content_type = "application/json"
6807
 
6808
+ def __init__(self, model_id="amazon.titan-embed-text-v2:0"):
6809
  self.bedrock = boto3.client(service_name='bedrock-runtime')
6810
  self.model_id = model_id
6811
  def __call__(self, text, dimensions, normalize=True):
 
6837
  dimensions = 1024
6838
  normalize = True
6839
 
6840
+ titan_embeddings_v2 = TitanEmbeddings(model_id="amazon.titan-embed-text-v2:0")
6841
 
6842
  input_text = "What are the different services that you offer?"
6843
  embedding = titan_embeddings_v2(input_text, dimensions, normalize)
 
6870
  }
6871
  },
6872
  "jobName": "embeddings-v2-batch-job",
6873
+ "modelId": "amazon.titan-embed-text-v2:0",
6874
  "outputDataConfig": {
6875
  "s3OutputDataConfig": {
6876
  "s3Uri": "s3://my-output-bucket/batch-output/"