s2s / handler.py
andito's picture
andito HF staff
Upload folder using huggingface_hub
13a1a62 verified
from typing import Dict, Any, List, Generator
import torch
import os
import logging
from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline
import numpy as np
from queue import Queue, Empty
import threading
import base64
import uuid
class EndpointHandler:
def __init__(self, path=""):
(
self.module_kwargs,
self.socket_receiver_kwargs,
self.socket_sender_kwargs,
self.vad_handler_kwargs,
self.whisper_stt_handler_kwargs,
self.paraformer_stt_handler_kwargs,
self.language_model_handler_kwargs,
self.mlx_language_model_handler_kwargs,
self.parler_tts_handler_kwargs,
self.melo_tts_handler_kwargs,
self.chat_tts_handler_kwargs,
) = get_default_arguments(mode='none', log_level='DEBUG', lm_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', tts_compile_mode='default', stt_compile_mode='reduce-overhead', tts_model_name='ylacombe/parler-tiny-v1-jenny')
setup_logger(self.module_kwargs.log_level)
prepare_all_args(
self.module_kwargs,
self.whisper_stt_handler_kwargs,
self.paraformer_stt_handler_kwargs,
self.language_model_handler_kwargs,
self.mlx_language_model_handler_kwargs,
self.parler_tts_handler_kwargs,
self.melo_tts_handler_kwargs,
self.chat_tts_handler_kwargs,
)
self.queues_and_events = initialize_queues_and_events()
self.pipeline_manager = build_pipeline(
self.module_kwargs,
self.socket_receiver_kwargs,
self.socket_sender_kwargs,
self.vad_handler_kwargs,
self.whisper_stt_handler_kwargs,
self.paraformer_stt_handler_kwargs,
self.language_model_handler_kwargs,
self.mlx_language_model_handler_kwargs,
self.parler_tts_handler_kwargs,
self.melo_tts_handler_kwargs,
self.chat_tts_handler_kwargs,
self.queues_and_events,
)
self.pipeline_manager.start()
# Add a new queue for collecting the final output
self.final_output_queue = Queue()
self.sessions = {} # Store session information
self.vad_chunk_size = 512 # Set the chunk size required by the VAD model
self.sample_rate = 16000 # Set the expected sample rate
def _process_audio_chunk(self, audio_data: bytes, session_id: str):
print('processing audio chunk')
audio_array = np.frombuffer(audio_data, dtype=np.int16)
# Ensure the audio is in chunks of the correct size
chunks = [audio_array[i:i+self.vad_chunk_size] for i in range(0, len(audio_array), self.vad_chunk_size)]
for chunk in chunks:
if len(chunk) == self.vad_chunk_size:
self.queues_and_events['recv_audio_chunks_queue'].put(chunk.tobytes())
elif len(chunk) < self.vad_chunk_size:
# Pad the last chunk if it's smaller than the required size
padded_chunk = np.pad(chunk, (0, self.vad_chunk_size - len(chunk)), 'constant')
self.queues_and_events['recv_audio_chunks_queue'].put(padded_chunk.tobytes())
def _collect_output(self, session_id):
while True:
try:
output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=2)
if isinstance(output, (str, bytes)) and output in (b"END", "END"):
self.sessions[session_id]['status'] = 'completed'
break
elif isinstance(output, np.ndarray):
self.sessions[session_id]['chunks'].append(output.tobytes())
else:
self.sessions[session_id]['chunks'].append(output)
except Empty:
continue
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
request_type = data.get("request_type", "start")
if request_type == "start":
return self._handle_start_request(data)
elif request_type == "continue":
return self._handle_continue_request(data)
else:
raise ValueError(f"Unsupported request type: {request_type}")
def _handle_start_request(self, data: Dict[str, Any]) -> Dict[str, Any]:
print("Starting new session")
session_id = str(uuid.uuid4())
self.sessions[session_id] = {
'status': 'new',
'chunks': [],
'last_sent_index': 0,
'buffer': b'' # Add a buffer to store incomplete chunks
}
input_type = data.get("input_type", "text")
input_data = data.get("inputs", "")
print(f"input_type: {input_type}")
print(f"input_data: {input_data}")
if input_type == "speech":
audio_bytes = base64.b64decode(input_data)
self._process_audio_chunk(audio_bytes, session_id)
elif input_type == "text":
self.queues_and_events['text_prompt_queue'].put(input_data)
else:
raise ValueError(f"Unsupported input type: {input_type}")
# Start output collection in a separate thread
threading.Thread(target=self._collect_output, args=(session_id,)).start()
return {"session_id": session_id, "status": "new"}
def _handle_continue_request(self, data: Dict[str, Any]) -> Dict[str, Any]:
session_id = data.get("session_id")
print(f"session_id: {session_id}")
print('continue request')
if not session_id or session_id not in self.sessions:
raise ValueError("Invalid or missing session_id")
session = self.sessions[session_id]
if not self.queues_and_events['should_listen'].is_set():
session['status'] = 'processing'
print('should_listen is not set, processing')
elif "inputs" in data: # Handle additional input if provided
input_data = data["inputs"]
print(f"input_data: {input_data}")
audio_bytes = base64.b64decode(input_data)
self._process_audio_chunk(audio_bytes, session_id)
chunks_to_send = session['chunks'][session['last_sent_index']:]
session['last_sent_index'] = len(session['chunks'])
if chunks_to_send:
print('chunks_to_send')
combined_audio = b''.join(chunks_to_send)
base64_audio = base64.b64encode(combined_audio).decode('utf-8')
return {
"session_id": session_id,
"status": session['status'],
"output": base64_audio
}
else:
return {
"session_id": session_id,
"status": session['status'],
"output": None
}
def cleanup(self):
# Stop the pipeline
self.pipeline_manager.stop()
# Stop the output collector thread
self.queues_and_events['send_audio_chunks_queue'].put(b"END")
self.output_collector_thread.join()