Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- biomedical
|
6 |
+
- bionlp
|
7 |
+
- entity linking
|
8 |
+
- embedding
|
9 |
+
- bert
|
10 |
+
---
|
11 |
+
The GEBERT model pre-trained with GAT graph encoder.
|
12 |
+
|
13 |
+
The model was published at [CLEF 2023 conference](https://clef2023.clef-initiative.eu/). The source code is available at [github](https://github.com/Andoree/GEBERT).
|
14 |
+
|
15 |
+
|
16 |
+
Pretraining data: biomedical concept graph and concept names from the UMLS (2020AB release).
|
17 |
+
|
18 |
+
Base model: [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext).
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
```bibtex
|
23 |
+
@inproceedings{sakhovskiy2023gebert,
|
24 |
+
author="Sakhovskiy, Andrey
|
25 |
+
and Semenova, Natalia
|
26 |
+
and Kadurin, Artur
|
27 |
+
and Tutubalina, Elena",
|
28 |
+
title="Graph-Enriched Biomedical Entity Representation Transformer",
|
29 |
+
booktitle="Experimental IR Meets Multilinguality, Multimodality, and Interaction",
|
30 |
+
year="2023",
|
31 |
+
publisher="Springer Nature Switzerland",
|
32 |
+
address="Cham",
|
33 |
+
pages="109--120",
|
34 |
+
isbn="978-3-031-42448-9"
|
35 |
+
}
|
36 |
+
```
|