File size: 6,755 Bytes
ab21f0a
cbbae56
 
d06c867
 
cbbae56
 
 
 
 
d06c867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab21f0a
 
2372392
 
 
 
 
 
 
 
 
 
 
 
488b5d3
ab21f0a
cbbae56
ab21f0a
cbbae56
ab21f0a
cbbae56
 
a96586c
cbbae56
 
ab21f0a
cbbae56
ab21f0a
cbbae56
ab21f0a
cbbae56
 
 
ab21f0a
 
 
 
cbbae56
ab21f0a
cbbae56
ab21f0a
cbbae56
ab21f0a
cbbae56
ab21f0a
cbbae56
 
 
 
 
 
ab21f0a
d06c867
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- en
license: apache-2.0
library_name: trl
tags:
- distilabel
- dpo
- rlaif
- rlhf
datasets:
- argilla/dpo-mix-7k
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: CapybaraHermes-2.5-Mistral-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.78
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.91
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/CapybaraHermes-2.5-Mistral-7B
      name: Open LLM Leaderboard
---

# CapybaraHermes-2.5-Mistral-7B
<div>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png">
</div>

<p align="center">
  <a href="https://github.com/argilla-io/distilabel">
    <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
  </a>
</p>


This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). 

CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). 

To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench:

| Model                             | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. |
|-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------|
| argilla/CapybaraHermes-2.5-Mistral-7B     | **43.8**    | **73.35**   | 57.07      | **42.44**    | 8.24375    | **7.5625**      | 54.16     | **7.903125** |
| teknium/OpenHermes-2.5-Mistral-7B | 42.75   | 72.99   | 52.99      | 40.94    | **8.25**       | 7.2875      | 52.42     | 7.76875      |
| Mistral-7B-Instruct-v0.2          | 38.5    | 71.64   | **66.82**  | 42.29    | 7.8375     | 7.1         | **54.81** | 7.46875      |

The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores.

For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference):

|                                                               Model                                                                |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)|  45.29|  76.92|     71.66|   48.78|  60.66|




## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Argilla
- **Shared by [optional]:** Argilla
- **Model type:** 7B chat model
- **Language(s) (NLP):** English
- **License:** Same as OpenHermes
- **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_argilla__CapybaraHermes-2.5-Mistral-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.14|
|AI2 Reasoning Challenge (25-Shot)|65.78|
|HellaSwag (10-Shot)              |85.45|
|MMLU (5-Shot)                    |63.13|
|TruthfulQA (0-shot)              |56.91|
|Winogrande (5-shot)              |78.30|
|GSM8k (5-shot)                   |59.29|