Alexander Slessor commited on
Commit
01a1c19
1 Parent(s): 7086666

updated readme

Browse files
Files changed (2) hide show
  1. README.md +8 -2
  2. handler.py +11 -12
README.md CHANGED
@@ -1,7 +1,13 @@
1
  ---
2
  language: en
3
  license: cc-by-nc-sa-4.0
4
-
 
 
 
 
 
 
5
  ---
6
 
7
  # LayoutLMv2
@@ -24,7 +30,7 @@ Examples & Guides
24
  - https://mccormickml.com/2020/03/10/question-answering-with-a-fine-tuned-BERT/
25
 
26
 
27
- # Errors
28
 
29
  ```
30
  The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use LayoutLMv2ImageProcessor instead.
 
1
  ---
2
  language: en
3
  license: cc-by-nc-sa-4.0
4
+ tags:
5
+ - endpoints-template
6
+ library_name: generic
7
+ model-index:
8
+ - name: layoutlmv2-base-uncased
9
+ results: []
10
+ pipeline_tag: other
11
  ---
12
 
13
  # LayoutLMv2
 
30
  - https://mccormickml.com/2020/03/10/question-answering-with-a-fine-tuned-BERT/
31
 
32
 
33
+ # Warnings
34
 
35
  ```
36
  The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use LayoutLMv2ImageProcessor instead.
handler.py CHANGED
@@ -8,17 +8,17 @@ from transformers import LayoutLMv2TokenizerFast
8
  from transformers.tokenization_utils_base import BatchEncoding
9
  from transformers.tokenization_utils_base import TruncationStrategy
10
  from transformers.utils import TensorType
11
- from transformers.modeling_outputs import (
12
- QuestionAnsweringModelOutput as QuestionAnsweringModelOutputBase
13
- )
14
  import numpy as np
15
- from PIL import Image, ImageDraw, ImageFont
16
- from subprocess import run
17
  import pdf2image
18
- from pprint import pprint
19
  import logging
20
  from os import environ
21
- from dataclasses import dataclass
22
 
23
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
  # install tesseract-ocr and pytesseract
@@ -163,9 +163,8 @@ class EndpointHandler:
163
  includes the deserialized image file as PIL.Image
164
  """
165
  image = data.pop("inputs", data)
166
-
167
- # image = pdf_to_image(image)
168
  images = [x.convert("RGB") for x in pdf2image.convert_from_bytes(image)]
 
169
  question = "what is the bill date"
170
  with torch.no_grad():
171
  for image in images:
@@ -207,9 +206,9 @@ class EndpointHandler:
207
  target_start_index = torch.tensor([7])
208
  target_end_index = torch.tensor([14])
209
  outputs = self.model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
210
- predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
211
- predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
212
- # print(predicted_answer_span_start, predicted_answer_span_end)
213
  logger.info(f'''
214
  START
215
  predicted_start_idx: {predicted_start_idx}
 
8
  from transformers.tokenization_utils_base import BatchEncoding
9
  from transformers.tokenization_utils_base import TruncationStrategy
10
  from transformers.utils import TensorType
11
+ # from transformers.modeling_outputs import (
12
+ # QuestionAnsweringModelOutput as QuestionAnsweringModelOutputBase
13
+ # )
14
  import numpy as np
15
+ # from PIL import Image, ImageDraw, ImageFont
16
+ # from subprocess import run
17
  import pdf2image
18
+ # from pprint import pprint
19
  import logging
20
  from os import environ
21
+ # from dataclasses import dataclass
22
 
23
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
  # install tesseract-ocr and pytesseract
 
163
  includes the deserialized image file as PIL.Image
164
  """
165
  image = data.pop("inputs", data)
 
 
166
  images = [x.convert("RGB") for x in pdf2image.convert_from_bytes(image)]
167
+
168
  question = "what is the bill date"
169
  with torch.no_grad():
170
  for image in images:
 
206
  target_start_index = torch.tensor([7])
207
  target_end_index = torch.tensor([14])
208
  outputs = self.model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
209
+ # predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
210
+ # predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
211
+
212
  logger.info(f'''
213
  START
214
  predicted_start_idx: {predicted_start_idx}