auriolar commited on
Commit
9037546
1 Parent(s): 6f9f163

Initial commit

Browse files
.gitattributes CHANGED
@@ -31,3 +31,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
31
  *.zip filter=lfs diff=lfs merge=lfs -text
32
  *.zst filter=lfs diff=lfs merge=lfs -text
33
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
31
  *.zip filter=lfs diff=lfs merge=lfs -text
32
  *.zst filter=lfs diff=lfs merge=lfs -text
33
  *tfevents* filter=lfs diff=lfs merge=lfs -text
34
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1766.21 +/- 63.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e978427e326b30bd8e684974af49a916acd9448510fc59962b565dc6aefa2974
3
+ size 129195
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41f3d91320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41f3d913b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41f3d91440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41f3d914d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f41f3d91560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f41f3d915f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41f3d91680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f41f3d91710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41f3d917a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41f3d91830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41f3d918c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f41f3dd9ae0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1666706819768340776,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAC3klvq5PLj+6qls+KxAjQCzP6T/1J6m/cn71PlqpW79XAYQ/V1lQQNHUL70Andk/Wg28P1b3CT96T3I/GK0oQPxjpz83LR+/tq8uP6JUhD8iU5K/NaziO1LCeL5Eg6k+r/GRv/Pj4T5m69Y+eQY7P6H9LT/Dvsc8P1QgP6mBwD8X0Em/nN1yP1HNkL5sTam/cS+APw1vXb62+cA/nzsIv5KGzb9G1ws+sC49PxRysL/ytRy/Ecd3v2mqJz/MB9C+ZRBVv3QRVT+ZtYy+BCP1vjyGYD+9DxHAZuvWPs00r79Di0o/5eqovhz0Kz8eoo4/ADebvz1Lrr1xmLK+8Ph/v/fZVT9i6NK/uY+hP9WkSL/Qqsu/zNMIPc9iNb746mA7nz6GvzpT1L9eO9M+FX0rvrJlLb/ur+8+v/dtvx1BXz48hmA/vQ8RwGbr1j7NNK+/X+9kPs91HT+eHI4+QzWfP8JljT8gIYw/zcIGvjVAY75dtPk+dWKYPk58iL+99by7ExvDvlHxC0BnDm09In2WPskCLD8a1l5A3EMHvT7Esj8iHY6/UWDJPsoCjD6dBkM9r/GRv/Pj4T5m69Y+eQY7P5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAB89nrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2tYw9AAAAAE6I/r8AAAAADf2TvQAAAACVwvs/AAAAAEo5u70AAAAAFxf3PwAAAADAruK8AAAAAI+09b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTehS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU/TDPAAAAABC8vW/AAAAAHklT70AAAAAnDv3PwAAAABgoa+9AAAAANlQ3T8AAAAA0gONvQAAAAAJz+e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ELzNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyP5DwAAAAAtGbevwAAAAD92M09AAAAACL//T8AAAAAyP6lvQAAAAD3KwFAAAAAADQatr0AAAAAM4XbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAElzLjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC32fW8AAAAAAmM578AAAAAlB+vPQAAAABcwd8/AAAAACbw0b0AAAAAzdL8PwAAAABsPdi9AAAAAM7N2L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhLU189fTmMAWyUTegDjAF0lEdAqBZK4nWrfnV9lChoBkdAjpsWVeKKpGgHTegDaAhHQKgZ4oAGSp11fZQoaAZHQJfkxdX1antoB03oA2gIR0CoGsU3Ov+wdX2UKGgGR0CZiGtl7MPjaAdN6ANoCEdAqB9LaEi+tnV9lChoBkdAlnZ4wVTJhmgHTegDaAhHQKgjGG7jDKp1fZQoaAZHQJbFXZ/Tb35oB03oA2gIR0CoJrbsF+uvdX2UKGgGR0CVB6WPcSGraAdN6ANoCEdAqCecVk+X7nV9lChoBkdAmGToVdonKGgHTegDaAhHQKgsCLkS26V1fZQoaAZHQJS1jRgJC0FoB03oA2gIR0CoL9L3sXzldX2UKGgGR0CYUiVktmL+aAdN6ANoCEdAqDNfsHB1tHV9lChoBkdAlustkFwDNmgHTegDaAhHQKg0Po0ygwp1fZQoaAZHQJN7Gz4UN8VoB03oA2gIR0CoOL/0NBnjdX2UKGgGR0CUChJgssg/aAdN6ANoCEdAqDx0eOn2qXV9lChoBkdAlJD4PCl7+mgHTegDaAhHQKg//w97ngZ1fZQoaAZHQI4dfQrtmcxoB03oA2gIR0CoQOSXUpd9dX2UKGgGR0CVvwjWCmMwaAdN6ANoCEdAqEVLK1XvIHV9lChoBkdAlLNGKl54W2gHTegDaAhHQKhI+RYigTR1fZQoaAZHQJcUnBuXNTtoB03oA2gIR0CoTLbedkJ8dX2UKGgGR0CYh6zXz19OaAdN6ANoCEdAqE2XpSrHVHV9lChoBkdAlNQAzpHI62gHTegDaAhHQKhSB7SiM5x1fZQoaAZHQJcOABNmDlJoB03oA2gIR0CoVbjin5zpdX2UKGgGR0CV/henyd4FaAdN6ANoCEdAqFlOPNmlInV9lChoBkdAlWV1n/T9bWgHTegDaAhHQKhaM4ACGN91fZQoaAZHQJYczu2JBPdoB03oA2gIR0CoXrAJTl1bdX2UKGgGR0CR98QTEit8aAdN6ANoCEdAqGJ0do3713V9lChoBkdAmUijwtrbg2gHTegDaAhHQKhmAADJU5x1fZQoaAZHQJmMJYMfA9FoB03oA2gIR0CoZuer2g3+dX2UKGgGR0CTMrZb6guiaAdN6ANoCEdAqGuCoXKr73V9lChoBkdAdWLUh3aBZ2gHTegDaAhHQKhvRfZVXFN1fZQoaAZHQI7FpwqAjIJoB03oA2gIR0CocutW2gFpdX2UKGgGR0CLlasPJ7swaAdN6ANoCEdAqHPXQ2MsH3V9lChoBkdAlHCrQHAymGgHTegDaAhHQKh4SabWmP51fZQoaAZHQIhjHL9uP3loB03oA2gIR0CofASAxzq9dX2UKGgGR0CWNPS8rZrYaAdN6ANoCEdAqH+js8gZCXV9lChoBkdAiKi3F98Z1mgHTegDaAhHQKiAjAVwgkl1fZQoaAZHQHwVBQJokAxoB03oA2gIR0CohQI065oXdX2UKGgGR0CXZSY1pCa7aAdN6ANoCEdAqIipAGB4EHV9lChoBkdAl8WjWK/EfmgHTegDaAhHQKiMKAd4mkZ1fZQoaAZHQJg+aw3YL9doB03oA2gIR0CojQdIoVmBdX2UKGgGR0CRwmYGMXJpaAdN6ANoCEdAqJFp+DvmYHV9lChoBkdAkqROs5n14GgHTegDaAhHQKiVOdjoZAJ1fZQoaAZHQHh9OyVv/BFoB03oA2gIR0ComMet0V8DdX2UKGgGR0CSvME9Mbm2aAdN6ANoCEdAqJmnbwjMV3V9lChoBkdAj9isw1zhgmgHTegDaAhHQKieQpR4yGl1fZQoaAZHQJW6ka6z3RJoB03oA2gIR0Cooe0ngHeKdX2UKGgGR0B5OKQYDTz/aAdN6ANoCEdAqKV0MqjJuHV9lChoBkdAkoA90eU6gmgHTegDaAhHQKimYzj3mFJ1fZQoaAZHQJIybPomoitoB03oA2gIR0Coqs2FWXC1dX2UKGgGR0CPHLNdqtYCaAdN6ANoCEdAqK6E2P1cuHV9lChoBkdAjnPbnX/YJ2gHTegDaAhHQKiyDzqbBoF1fZQoaAZHQJDE+T7l7t1oB03oA2gIR0Cosujh1klNdX2UKGgGR0CJGtUJfICEaAdN6ANoCEdAqLdiuZCv5nV9lChoBkdAlQqp9iMHbGgHTegDaAhHQKi7B81n/T91fZQoaAZHQIvjeqHXVb1oB03oA2gIR0CovolNtZV5dX2UKGgGR0CRz5ggow23aAdN6ANoCEdAqL9qrq+rVHV9lChoBkdAiDVeeFtbcGgHTegDaAhHQKjD5pN9H+Z1fZQoaAZHQJJX7AJswcpoB03oA2gIR0Cox5fwI+nqdX2UKGgGR0CGqL2U0Nz9aAdN6ANoCEdAqMsg1LrX2HV9lChoBkdAi3lC6pYLcGgHTegDaAhHQKjMCB19v0h1fZQoaAZHQIZhNie/YapoB03oA2gIR0Co0Jbe2uxKdX2UKGgGR0CQWV3PAwfyaAdN6ANoCEdAqNRMj5bhWHV9lChoBkdAkLLjPjXFtWgHTegDaAhHQKjXyT2WY4R1fZQoaAZHQJInbRArxy5oB03oA2gIR0Co2KyQo1DTdX2UKGgGR0CLAdUJfICEaAdN6ANoCEdAqN0ZVMmF8HV9lChoBkdAksp0cKgIyGgHTegDaAhHQKjgz2zv7WN1fZQoaAZHQIzjVVmz0H1oB03oA2gIR0Co5I8QRPGidX2UKGgGR0CRZgaJyhi9aAdN6ANoCEdAqOVzg2qDLHV9lChoBkdAkHD181Gb1GgHTegDaAhHQKjqA3F1jiJ1fZQoaAZHQJFrM7/4qPRoB03oA2gIR0Co7cDD8+A3dX2UKGgGR0CSZgYWLxZuaAdN6ANoCEdAqPFDaVUuMHV9lChoBkdAkTGqpYLb6GgHTegDaAhHQKjyJA44p+d1fZQoaAZHQJAL+AjIJZ5oB03oA2gIR0Co9oW5QP7OdX2UKGgGR0CVDE/j81n/aAdN6ANoCEdAqPo2lwcYInV9lChoBkdAlygD/dZaFGgHTegDaAhHQKj9rqveP7x1fZQoaAZHQJmEfCcf/3poB03oA2gIR0Co/oj+717IdX2UKGgGR0CbDKsi0OVgaAdN6ANoCEdAqQMJcxCY1HV9lChoBkdAlifIduHerWgHTegDaAhHQKkGxcwg1WN1fZQoaAZHQJR1s4gieNFoB03oA2gIR0CpClkrGza9dX2UKGgGR0CKU6v9LpRoaAdN6ANoCEdAqQtGbTc7AHV9lChoBkdAkyRC4vvjO2gHTegDaAhHQKkPv2yLQ5Z1fZQoaAZHQJf1B60IC2doB03oA2gIR0CpE4Ot4iX6dX2UKGgGR0CW+OtKqXF+aAdN6ANoCEdAqRcaG34KyHV9lChoBkdAldZeWOZLI2gHTegDaAhHQKkX+56t1ZF1fZQoaAZHQJTy93LV4HJoB03oA2gIR0CpHE++23KCdX2UKGgGR0CdAovjOs1baAdN6ANoCEdAqSAFhmXgL3V9lChoBkdAnGVd4/u9e2gHTegDaAhHQKkjnWDpTuR1fZQoaAZHQJuGS9ugpSdoB03oA2gIR0CpJHoduHerdX2UKGgGR0CcYsSTQmeEaAdN6ANoCEdAqSjfWrfce3V9lChoBkdAm6ZwaNuLrGgHTegDaAhHQKkslcu8K5V1fZQoaAZHQJv9IVeruIBoB03oA2gIR0CpMBZeZ5RkdX2UKGgGR0CbSAzsQd0aaAdN6ANoCEdAqTDtCswL3XV9lChoBkdAmt0NKyv9tWgHTegDaAhHQKk1X6xgRbt1fZQoaAZHQJf4xxxT851oB03oA2gIR0CpOQVxsEaEdX2UKGgGR0CYvBhHskY5aAdN6ANoCEdAqTyJ6Ww/xHV9lChoBkdAnEIvRJEpiWgHTegDaAhHQKk9anWrfch1fZQoaAZHQJ0XkrhBJI1oB03oA2gIR0CpQdM6zVtodX2UKGgGR0CWQwIk7fYSaAdN6ANoCEdAqUWBPykKu3V9lChoBkdAmQCLfHggo2gHTegDaAhHQKlJC9/SYw91fZQoaAZHQJqL23lS0jVoB03oA2gIR0CpSejs2NvPdX2UKGgGR0CWjJoOx0MgaAdN6ANoCEdAqU5KTOgQH3VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ee3bb7d33c591e43652adf9b402d7af5b2988d795100a279b83db136483557f
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:983f1e914180adaa85064c791944565d87cecbce54e2e401e30aa88b6c26c727
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41f3d91320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41f3d913b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41f3d91440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41f3d914d0>", "_build": "<function ActorCriticPolicy._build at 0x7f41f3d91560>", "forward": "<function ActorCriticPolicy.forward at 0x7f41f3d915f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41f3d91680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41f3d91710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41f3d917a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41f3d91830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41f3d918c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41f3dd9ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666706819768340776, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAC3klvq5PLj+6qls+KxAjQCzP6T/1J6m/cn71PlqpW79XAYQ/V1lQQNHUL70Andk/Wg28P1b3CT96T3I/GK0oQPxjpz83LR+/tq8uP6JUhD8iU5K/NaziO1LCeL5Eg6k+r/GRv/Pj4T5m69Y+eQY7P6H9LT/Dvsc8P1QgP6mBwD8X0Em/nN1yP1HNkL5sTam/cS+APw1vXb62+cA/nzsIv5KGzb9G1ws+sC49PxRysL/ytRy/Ecd3v2mqJz/MB9C+ZRBVv3QRVT+ZtYy+BCP1vjyGYD+9DxHAZuvWPs00r79Di0o/5eqovhz0Kz8eoo4/ADebvz1Lrr1xmLK+8Ph/v/fZVT9i6NK/uY+hP9WkSL/Qqsu/zNMIPc9iNb746mA7nz6GvzpT1L9eO9M+FX0rvrJlLb/ur+8+v/dtvx1BXz48hmA/vQ8RwGbr1j7NNK+/X+9kPs91HT+eHI4+QzWfP8JljT8gIYw/zcIGvjVAY75dtPk+dWKYPk58iL+99by7ExvDvlHxC0BnDm09In2WPskCLD8a1l5A3EMHvT7Esj8iHY6/UWDJPsoCjD6dBkM9r/GRv/Pj4T5m69Y+eQY7P5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAB89nrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2tYw9AAAAAE6I/r8AAAAADf2TvQAAAACVwvs/AAAAAEo5u70AAAAAFxf3PwAAAADAruK8AAAAAI+09b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTehS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU/TDPAAAAABC8vW/AAAAAHklT70AAAAAnDv3PwAAAABgoa+9AAAAANlQ3T8AAAAA0gONvQAAAAAJz+e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ELzNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLyP5DwAAAAAtGbevwAAAAD92M09AAAAACL//T8AAAAAyP6lvQAAAAD3KwFAAAAAADQatr0AAAAAM4XbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAElzLjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC32fW8AAAAAAmM578AAAAAlB+vPQAAAABcwd8/AAAAACbw0b0AAAAAzdL8PwAAAABsPdi9AAAAAM7N2L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhLU189fTmMAWyUTegDjAF0lEdAqBZK4nWrfnV9lChoBkdAjpsWVeKKpGgHTegDaAhHQKgZ4oAGSp11fZQoaAZHQJfkxdX1antoB03oA2gIR0CoGsU3Ov+wdX2UKGgGR0CZiGtl7MPjaAdN6ANoCEdAqB9LaEi+tnV9lChoBkdAlnZ4wVTJhmgHTegDaAhHQKgjGG7jDKp1fZQoaAZHQJbFXZ/Tb35oB03oA2gIR0CoJrbsF+uvdX2UKGgGR0CVB6WPcSGraAdN6ANoCEdAqCecVk+X7nV9lChoBkdAmGToVdonKGgHTegDaAhHQKgsCLkS26V1fZQoaAZHQJS1jRgJC0FoB03oA2gIR0CoL9L3sXzldX2UKGgGR0CYUiVktmL+aAdN6ANoCEdAqDNfsHB1tHV9lChoBkdAlustkFwDNmgHTegDaAhHQKg0Po0ygwp1fZQoaAZHQJN7Gz4UN8VoB03oA2gIR0CoOL/0NBnjdX2UKGgGR0CUChJgssg/aAdN6ANoCEdAqDx0eOn2qXV9lChoBkdAlJD4PCl7+mgHTegDaAhHQKg//w97ngZ1fZQoaAZHQI4dfQrtmcxoB03oA2gIR0CoQOSXUpd9dX2UKGgGR0CVvwjWCmMwaAdN6ANoCEdAqEVLK1XvIHV9lChoBkdAlLNGKl54W2gHTegDaAhHQKhI+RYigTR1fZQoaAZHQJcUnBuXNTtoB03oA2gIR0CoTLbedkJ8dX2UKGgGR0CYh6zXz19OaAdN6ANoCEdAqE2XpSrHVHV9lChoBkdAlNQAzpHI62gHTegDaAhHQKhSB7SiM5x1fZQoaAZHQJcOABNmDlJoB03oA2gIR0CoVbjin5zpdX2UKGgGR0CV/henyd4FaAdN6ANoCEdAqFlOPNmlInV9lChoBkdAlWV1n/T9bWgHTegDaAhHQKhaM4ACGN91fZQoaAZHQJYczu2JBPdoB03oA2gIR0CoXrAJTl1bdX2UKGgGR0CR98QTEit8aAdN6ANoCEdAqGJ0do3713V9lChoBkdAmUijwtrbg2gHTegDaAhHQKhmAADJU5x1fZQoaAZHQJmMJYMfA9FoB03oA2gIR0CoZuer2g3+dX2UKGgGR0CTMrZb6guiaAdN6ANoCEdAqGuCoXKr73V9lChoBkdAdWLUh3aBZ2gHTegDaAhHQKhvRfZVXFN1fZQoaAZHQI7FpwqAjIJoB03oA2gIR0CocutW2gFpdX2UKGgGR0CLlasPJ7swaAdN6ANoCEdAqHPXQ2MsH3V9lChoBkdAlHCrQHAymGgHTegDaAhHQKh4SabWmP51fZQoaAZHQIhjHL9uP3loB03oA2gIR0CofASAxzq9dX2UKGgGR0CWNPS8rZrYaAdN6ANoCEdAqH+js8gZCXV9lChoBkdAiKi3F98Z1mgHTegDaAhHQKiAjAVwgkl1fZQoaAZHQHwVBQJokAxoB03oA2gIR0CohQI065oXdX2UKGgGR0CXZSY1pCa7aAdN6ANoCEdAqIipAGB4EHV9lChoBkdAl8WjWK/EfmgHTegDaAhHQKiMKAd4mkZ1fZQoaAZHQJg+aw3YL9doB03oA2gIR0CojQdIoVmBdX2UKGgGR0CRwmYGMXJpaAdN6ANoCEdAqJFp+DvmYHV9lChoBkdAkqROs5n14GgHTegDaAhHQKiVOdjoZAJ1fZQoaAZHQHh9OyVv/BFoB03oA2gIR0ComMet0V8DdX2UKGgGR0CSvME9Mbm2aAdN6ANoCEdAqJmnbwjMV3V9lChoBkdAj9isw1zhgmgHTegDaAhHQKieQpR4yGl1fZQoaAZHQJW6ka6z3RJoB03oA2gIR0Cooe0ngHeKdX2UKGgGR0B5OKQYDTz/aAdN6ANoCEdAqKV0MqjJuHV9lChoBkdAkoA90eU6gmgHTegDaAhHQKimYzj3mFJ1fZQoaAZHQJIybPomoitoB03oA2gIR0Coqs2FWXC1dX2UKGgGR0CPHLNdqtYCaAdN6ANoCEdAqK6E2P1cuHV9lChoBkdAjnPbnX/YJ2gHTegDaAhHQKiyDzqbBoF1fZQoaAZHQJDE+T7l7t1oB03oA2gIR0Cosujh1klNdX2UKGgGR0CJGtUJfICEaAdN6ANoCEdAqLdiuZCv5nV9lChoBkdAlQqp9iMHbGgHTegDaAhHQKi7B81n/T91fZQoaAZHQIvjeqHXVb1oB03oA2gIR0CovolNtZV5dX2UKGgGR0CRz5ggow23aAdN6ANoCEdAqL9qrq+rVHV9lChoBkdAiDVeeFtbcGgHTegDaAhHQKjD5pN9H+Z1fZQoaAZHQJJX7AJswcpoB03oA2gIR0Cox5fwI+nqdX2UKGgGR0CGqL2U0Nz9aAdN6ANoCEdAqMsg1LrX2HV9lChoBkdAi3lC6pYLcGgHTegDaAhHQKjMCB19v0h1fZQoaAZHQIZhNie/YapoB03oA2gIR0Co0Jbe2uxKdX2UKGgGR0CQWV3PAwfyaAdN6ANoCEdAqNRMj5bhWHV9lChoBkdAkLLjPjXFtWgHTegDaAhHQKjXyT2WY4R1fZQoaAZHQJInbRArxy5oB03oA2gIR0Co2KyQo1DTdX2UKGgGR0CLAdUJfICEaAdN6ANoCEdAqN0ZVMmF8HV9lChoBkdAksp0cKgIyGgHTegDaAhHQKjgz2zv7WN1fZQoaAZHQIzjVVmz0H1oB03oA2gIR0Co5I8QRPGidX2UKGgGR0CRZgaJyhi9aAdN6ANoCEdAqOVzg2qDLHV9lChoBkdAkHD181Gb1GgHTegDaAhHQKjqA3F1jiJ1fZQoaAZHQJFrM7/4qPRoB03oA2gIR0Co7cDD8+A3dX2UKGgGR0CSZgYWLxZuaAdN6ANoCEdAqPFDaVUuMHV9lChoBkdAkTGqpYLb6GgHTegDaAhHQKjyJA44p+d1fZQoaAZHQJAL+AjIJZ5oB03oA2gIR0Co9oW5QP7OdX2UKGgGR0CVDE/j81n/aAdN6ANoCEdAqPo2lwcYInV9lChoBkdAlygD/dZaFGgHTegDaAhHQKj9rqveP7x1fZQoaAZHQJmEfCcf/3poB03oA2gIR0Co/oj+717IdX2UKGgGR0CbDKsi0OVgaAdN6ANoCEdAqQMJcxCY1HV9lChoBkdAlifIduHerWgHTegDaAhHQKkGxcwg1WN1fZQoaAZHQJR1s4gieNFoB03oA2gIR0CpClkrGza9dX2UKGgGR0CKU6v9LpRoaAdN6ANoCEdAqQtGbTc7AHV9lChoBkdAkyRC4vvjO2gHTegDaAhHQKkPv2yLQ5Z1fZQoaAZHQJf1B60IC2doB03oA2gIR0CpE4Ot4iX6dX2UKGgGR0CW+OtKqXF+aAdN6ANoCEdAqRcaG34KyHV9lChoBkdAldZeWOZLI2gHTegDaAhHQKkX+56t1ZF1fZQoaAZHQJTy93LV4HJoB03oA2gIR0CpHE++23KCdX2UKGgGR0CdAovjOs1baAdN6ANoCEdAqSAFhmXgL3V9lChoBkdAnGVd4/u9e2gHTegDaAhHQKkjnWDpTuR1fZQoaAZHQJuGS9ugpSdoB03oA2gIR0CpJHoduHerdX2UKGgGR0CcYsSTQmeEaAdN6ANoCEdAqSjfWrfce3V9lChoBkdAm6ZwaNuLrGgHTegDaAhHQKkslcu8K5V1fZQoaAZHQJv9IVeruIBoB03oA2gIR0CpMBZeZ5RkdX2UKGgGR0CbSAzsQd0aaAdN6ANoCEdAqTDtCswL3XV9lChoBkdAmt0NKyv9tWgHTegDaAhHQKk1X6xgRbt1fZQoaAZHQJf4xxxT851oB03oA2gIR0CpOQVxsEaEdX2UKGgGR0CYvBhHskY5aAdN6ANoCEdAqTyJ6Ww/xHV9lChoBkdAnEIvRJEpiWgHTegDaAhHQKk9anWrfch1fZQoaAZHQJ0XkrhBJI1oB03oA2gIR0CpQdM6zVtodX2UKGgGR0CWQwIk7fYSaAdN6ANoCEdAqUWBPykKu3V9lChoBkdAmQCLfHggo2gHTegDaAhHQKlJC9/SYw91fZQoaAZHQJqL23lS0jVoB03oA2gIR0CpSejs2NvPdX2UKGgGR0CWjJoOx0MgaAdN6ANoCEdAqU5KTOgQH3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f6fc343e77a76011be5f712c6d01eabaa8ea0aa8dd674ef4f381530f349e40a
3
+ size 1100440
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1766.2085574090713, "std_reward": 63.43913527626146, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-25T15:01:32.355027"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:564dc053c36fcb1753cfe7e7a92c97fc12a98f750f5f23d1fc37292a8e34ea57
3
+ size 2763