bartowski commited on
Commit
f1bfe58
1 Parent(s): 3afd33b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +48 -43
README.md CHANGED
@@ -1,30 +1,17 @@
1
  ---
2
- license: mit
3
- license_link: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct/resolve/main/LICENSE
4
-
5
- language:
6
- - multilingual
7
- pipeline_tag: text-generation
8
- tags:
9
- - nlp
10
- - code
11
- inference:
12
- parameters:
13
- temperature: 0.7
14
- widget:
15
- - messages:
16
- - role: user
17
- content: Can you provide ways to eat combinations of bananas and dragonfruits?
18
  quantized_by: bartowski
 
19
  ---
20
 
21
  ## Llamacpp imatrix Quantizations of Phi-3-medium-128k-instruct
22
 
23
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> pull request <a href="https://github.com/ggerganov/llama.cpp/pull/7225">7225</a> for quantization.
24
 
25
  Original model: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct
26
 
27
- All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a)
 
 
28
 
29
  ## Prompt format
30
 
@@ -32,32 +19,49 @@ All quants made using imatrix option with dataset from [here](https://gist.githu
32
  <|user|> {prompt}<|end|><|assistant|><|end|>
33
  ```
34
 
 
 
 
 
35
  ## Download a file (not the whole branch) from below:
36
 
37
- | Filename | Quant type | File Size | Description |
38
- | -------- | ---------- | --------- | ----------- |
39
- | [Phi-3-medium-128k-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q8_0.gguf) | Q8_0 | 14.83GB | Extremely high quality, generally unneeded but max available quant. |
40
- | [Phi-3-medium-128k-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q6_K.gguf) | Q6_K | 11.45GB | Very high quality, near perfect, *recommended*. |
41
- | [Phi-3-medium-128k-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q5_K_M.gguf) | Q5_K_M | 10.07GB | High quality, *recommended*. |
42
- | [Phi-3-medium-128k-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q5_K_S.gguf) | Q5_K_S | 9.62GB | High quality, *recommended*. |
43
- | [Phi-3-medium-128k-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q4_K_M.gguf) | Q4_K_M | 8.56GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
44
- | [Phi-3-medium-128k-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q4_K_S.gguf) | Q4_K_S | 7.95GB | Slightly lower quality with more space savings, *recommended*. |
45
- | [Phi-3-medium-128k-instruct-IQ4_NL.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ4_NL.gguf) | IQ4_NL | 7.89GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
46
- | [Phi-3-medium-128k-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ4_XS.gguf) | IQ4_XS | 7.46GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
47
- | [Phi-3-medium-128k-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_L.gguf) | Q3_K_L | 7.49GB | Lower quality but usable, good for low RAM availability. |
48
- | [Phi-3-medium-128k-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_M.gguf) | Q3_K_M | 6.92GB | Even lower quality. |
49
- | [Phi-3-medium-128k-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_M.gguf) | IQ3_M | 6.47GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
50
- | [Phi-3-medium-128k-instruct-IQ3_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_S.gguf) | IQ3_S | 6.06GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
51
- | [Phi-3-medium-128k-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_S.gguf) | Q3_K_S | 6.06GB | Low quality, not recommended. |
52
- | [Phi-3-medium-128k-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_XS.gguf) | IQ3_XS | 5.80GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
53
- | [Phi-3-medium-128k-instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_XXS.gguf) | IQ3_XXS | 5.45GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
54
- | [Phi-3-medium-128k-instruct-Q2_K.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q2_K.gguf) | Q2_K | 5.14GB | Very low quality but surprisingly usable. |
55
- | [Phi-3-medium-128k-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_M.gguf) | IQ2_M | 4.71GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
56
- | [Phi-3-medium-128k-instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_S.gguf) | IQ2_S | 4.33GB | Very low quality, uses SOTA techniques to be usable. |
57
- | [Phi-3-medium-128k-instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_XS.gguf) | IQ2_XS | 4.12GB | Very low quality, uses SOTA techniques to be usable. |
58
- | [Phi-3-medium-128k-instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_XXS.gguf) | IQ2_XXS | 3.71GB | Lower quality, uses SOTA techniques to be usable. |
59
- | [Phi-3-medium-128k-instruct-IQ1_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ1_M.gguf) | IQ1_M | 3.24GB | Extremely low quality, *not* recommended. |
60
- | [Phi-3-medium-128k-instruct-IQ1_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ1_S.gguf) | IQ1_S | 2.95GB | Extremely low quality, *not* recommended. |
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ## Downloading using huggingface-cli
63
 
@@ -76,7 +80,7 @@ huggingface-cli download bartowski/Phi-3-medium-128k-instruct-GGUF --include "Ph
76
  If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
77
 
78
  ```
79
- huggingface-cli download bartowski/Phi-3-medium-128k-instruct-GGUF --include "Phi-3-medium-128k-instruct-Q8_0.gguf/*" --local-dir Phi-3-medium-128k-instruct-Q8_0
80
  ```
81
 
82
  You can either specify a new local-dir (Phi-3-medium-128k-instruct-Q8_0) or download them all in place (./)
@@ -106,3 +110,4 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
106
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
107
 
108
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of Phi-3-medium-128k-instruct
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3561">b3561</a> for quantization.
9
 
10
  Original model: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct
11
 
12
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
13
+
14
+ Run them in [LM Studio](https://lmstudio.ai/)
15
 
16
  ## Prompt format
17
 
 
19
  <|user|> {prompt}<|end|><|assistant|><|end|>
20
  ```
21
 
22
+ ## What's new:
23
+
24
+ Updating to latest llama.cpp for rope fixes (thanks Niluayuk)
25
+
26
  ## Download a file (not the whole branch) from below:
27
 
28
+ | Filename | Quant type | File Size | Split | Description |
29
+ | -------- | ---------- | --------- | ----- | ----------- |
30
+ | [Phi-3-medium-128k-instruct-f32.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/tree/main/Phi-3-medium-128k-instruct-f32) | f32 | 55.84GB | true | Full F32 weights. |
31
+ | [Phi-3-medium-128k-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q8_0.gguf) | Q8_0 | 14.83GB | false | Extremely high quality, generally unneeded but max available quant. |
32
+ | [Phi-3-medium-128k-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q6_K_L.gguf) | Q6_K_L | 11.53GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
33
+ | [Phi-3-medium-128k-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q6_K.gguf) | Q6_K | 11.45GB | false | Very high quality, near perfect, *recommended*. |
34
+ | [Phi-3-medium-128k-instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q5_K_L.gguf) | Q5_K_L | 10.18GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
35
+ | [Phi-3-medium-128k-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q5_K_M.gguf) | Q5_K_M | 10.07GB | false | High quality, *recommended*. |
36
+ | [Phi-3-medium-128k-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q5_K_S.gguf) | Q5_K_S | 9.62GB | false | High quality, *recommended*. |
37
+ | [Phi-3-medium-128k-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q4_K_L.gguf) | Q4_K_L | 8.69GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
38
+ | [Phi-3-medium-128k-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q4_K_M.gguf) | Q4_K_M | 8.57GB | false | Good quality, default size for must use cases, *recommended*. |
39
+ | [Phi-3-medium-128k-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q4_K_S.gguf) | Q4_K_S | 7.95GB | false | Slightly lower quality with more space savings, *recommended*. |
40
+ | [Phi-3-medium-128k-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_XL.gguf) | Q3_K_XL | 7.63GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
41
+ | [Phi-3-medium-128k-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_L.gguf) | Q3_K_L | 7.49GB | false | Lower quality but usable, good for low RAM availability. |
42
+ | [Phi-3-medium-128k-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ4_XS.gguf) | IQ4_XS | 7.47GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
43
+ | [Phi-3-medium-128k-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_M.gguf) | Q3_K_M | 6.92GB | false | Low quality. |
44
+ | [Phi-3-medium-128k-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_M.gguf) | IQ3_M | 6.47GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
45
+ | [Phi-3-medium-128k-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q3_K_S.gguf) | Q3_K_S | 6.06GB | false | Low quality, not recommended. |
46
+ | [Phi-3-medium-128k-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ3_XS.gguf) | IQ3_XS | 5.81GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
47
+ | [Phi-3-medium-128k-instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q2_K_L.gguf) | Q2_K_L | 5.30GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
48
+ | [Phi-3-medium-128k-instruct-Q2_K.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-Q2_K.gguf) | Q2_K | 5.14GB | false | Very low quality but surprisingly usable. |
49
+ | [Phi-3-medium-128k-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_M.gguf) | IQ2_M | 4.72GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
50
+ | [Phi-3-medium-128k-instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/Phi-3-medium-128k-instruct-GGUF/blob/main/Phi-3-medium-128k-instruct-IQ2_XXS.gguf) | IQ2_XXS | 3.72GB | false | Very low quality, uses SOTA techniques to be usable. |
51
+
52
+ ## Embed/output weights
53
+
54
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
55
+
56
+ Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
57
+
58
+ Thanks!
59
+
60
+ ## Credits
61
+
62
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
63
+
64
+ Thank you ZeroWw for the inspiration to experiment with embed/output
65
 
66
  ## Downloading using huggingface-cli
67
 
 
80
  If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
81
 
82
  ```
83
+ huggingface-cli download bartowski/Phi-3-medium-128k-instruct-GGUF --include "Phi-3-medium-128k-instruct-Q8_0/*" --local-dir ./
84
  ```
85
 
86
  You can either specify a new local-dir (Phi-3-medium-128k-instruct-Q8_0) or download them all in place (./)
 
110
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
111
 
112
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
113
+