--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - trl - sft - generated_from_trainer model-index: - name: experiments results: [] --- # experiments This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4332 ## Model description ``` MODEL_NAME = "/content/blackhole33/llama-5000-sample-peft" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, quantization_config=quantization_config, device_map="auto" ) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3475 | 0.2 | 100 | 1.5142 | | 1.4979 | 0.4 | 200 | 1.4703 | | 1.4307 | 0.6 | 300 | 1.4510 | | 1.3795 | 0.8 | 400 | 1.4434 | | 1.3847 | 1.0 | 500 | 1.4332 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1