---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:67190
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A worker peers out from atop a building under construction.
sentences:
- The man pleads for mercy.
- People and a baby crossing the street.
- A person is atop of a building.
- source_sentence: An aisle at Best Buy with an employee standing at the computer
and a Geek Squad sign in the background.
sentences:
- the man is watching the stars
- The employee is wearing a blue shirt.
- A person balancing.
- source_sentence: A man with a long white beard is examining a camera and another
man with a black shirt is in the background.
sentences:
- a man is with another man
- Children in uniforms climb a tower.
- There are five children.
- source_sentence: A black dog with a blue collar is jumping into the water.
sentences:
- The dog is playing tug of war with a stick.
- There is a woman painting.
- A black dog wearing a blue collar is chasing something into the water.
- source_sentence: A wet child stands in chest deep ocean water.
sentences:
- A woman paints a portrait of her best friend.
- A person in red is cutting the grass on a riding mower
- The child s playing on the beach.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6583157259281618
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6766541004180908
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7049362860324137
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6017583012580872
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6115046147241897
name: Cosine Precision
- type: cosine_recall
value: 0.8320677570093458
name: Cosine Recall
- type: cosine_ap
value: 0.6995030811464378
name: Cosine Ap
- type: dot_accuracy
value: 0.6272260790824027
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 163.25054931640625
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6976381461675579
name: Dot F1
- type: dot_f1_threshold
value: 119.20779418945312
name: Dot F1 Threshold
- type: dot_precision
value: 0.5639409221902018
name: Dot Precision
- type: dot_recall
value: 0.914427570093458
name: Dot Recall
- type: dot_ap
value: 0.643747511442345
name: Dot Ap
- type: manhattan_accuracy
value: 0.6571083610021129
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 243.75453186035156
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7055783910745744
name: Manhattan F1
- type: manhattan_f1_threshold
value: 295.95947265625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5900608917697898
name: Manhattan Precision
- type: manhattan_recall
value: 0.8773364485981309
name: Manhattan Recall
- type: manhattan_ap
value: 0.7072033306346501
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6590703290069424
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 12.141830444335938
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7036813518406759
name: Euclidean F1
- type: euclidean_f1_threshold
value: 14.197540283203125
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5996708496194199
name: Euclidean Precision
- type: euclidean_recall
value: 0.8513434579439252
name: Euclidean Recall
- type: euclidean_ap
value: 0.7035256676322055
name: Euclidean Ap
- type: max_accuracy
value: 0.6590703290069424
name: Max Accuracy
- type: max_accuracy_threshold
value: 243.75453186035156
name: Max Accuracy Threshold
- type: max_f1
value: 0.7055783910745744
name: Max F1
- type: max_f1_threshold
value: 295.95947265625
name: Max F1 Threshold
- type: max_precision
value: 0.6115046147241897
name: Max Precision
- type: max_recall
value: 0.914427570093458
name: Max Recall
- type: max_ap
value: 0.7072033306346501
name: Max Ap
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.732169941341086
name: Pearson Cosine
- type: spearman_cosine
value: 0.7344587206087978
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7537099624360986
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7550555196955944
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7468210439584286
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.74849026008206
name: Spearman Euclidean
- type: pearson_dot
value: 0.6142835401925993
name: Pearson Dot
- type: spearman_dot
value: 0.6100201108417316
name: Spearman Dot
- type: pearson_max
value: 0.7537099624360986
name: Pearson Max
- type: spearman_max
value: 0.7550555196955944
name: Spearman Max
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
'A wet child stands in chest deep ocean water.',
'The child s playing on the beach.',
'A woman paints a portrait of her best friend.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6583 |
| cosine_accuracy_threshold | 0.6767 |
| cosine_f1 | 0.7049 |
| cosine_f1_threshold | 0.6018 |
| cosine_precision | 0.6115 |
| cosine_recall | 0.8321 |
| cosine_ap | 0.6995 |
| dot_accuracy | 0.6272 |
| dot_accuracy_threshold | 163.2505 |
| dot_f1 | 0.6976 |
| dot_f1_threshold | 119.2078 |
| dot_precision | 0.5639 |
| dot_recall | 0.9144 |
| dot_ap | 0.6437 |
| manhattan_accuracy | 0.6571 |
| manhattan_accuracy_threshold | 243.7545 |
| manhattan_f1 | 0.7056 |
| manhattan_f1_threshold | 295.9595 |
| manhattan_precision | 0.5901 |
| manhattan_recall | 0.8773 |
| manhattan_ap | 0.7072 |
| euclidean_accuracy | 0.6591 |
| euclidean_accuracy_threshold | 12.1418 |
| euclidean_f1 | 0.7037 |
| euclidean_f1_threshold | 14.1975 |
| euclidean_precision | 0.5997 |
| euclidean_recall | 0.8513 |
| euclidean_ap | 0.7035 |
| max_accuracy | 0.6591 |
| max_accuracy_threshold | 243.7545 |
| max_f1 | 0.7056 |
| max_f1_threshold | 295.9595 |
| max_precision | 0.6115 |
| max_recall | 0.9144 |
| **max_ap** | **0.7072** |
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7322 |
| **spearman_cosine** | **0.7345** |
| pearson_manhattan | 0.7537 |
| spearman_manhattan | 0.7551 |
| pearson_euclidean | 0.7468 |
| spearman_euclidean | 0.7485 |
| pearson_dot | 0.6143 |
| spearman_dot | 0.61 |
| pearson_max | 0.7537 |
| spearman_max | 0.7551 |
## Training Details
### Training Dataset
#### stanfordnlp/snli
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 67,190 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details |
Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.
| It is necessary to use a controlled method to ensure the treatments are worthwhile.
| 0
|
| It was conducted in silence.
| It was done silently.
| 0
|
| oh Lewisville any decent food in your cafeteria up there
| Is there any decent food in your cafeteria up there in Lewisville?
| 0
|
* Loss: [AdaptiveLayerLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1,
"kl_temperature": 1
}
```
### Evaluation Dataset
#### stanfordnlp/snli
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [AdaptiveLayerLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1,
"kl_temperature": 1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 42
- `per_device_eval_batch_size`: 22
- `learning_rate`: 3e-06
- `weight_decay`: 1e-08
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.5
- `save_safetensors`: False
- `fp16`: True
- `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmp
- `hub_strategy`: checkpoint
- `hub_private_repo`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters