File size: 1,840 Bytes
0617532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flux-dsum-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flux-dsum-small

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8477
- Rouge1: 0.3156
- Rouge2: 0.1379
- Rougel: 0.2767
- Rougelsum: 0.2765
- Gen Len: 17.5537

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.5294        | 1.0   | 21753 | 1.9915          | 0.3065 | 0.1264 | 0.27   | 0.2699    | 17.385  |
| 2.336         | 2.0   | 43506 | 1.8991          | 0.3085 | 0.1345 | 0.2702 | 0.2701    | 17.6597 |
| 2.2611        | 3.0   | 65259 | 1.8602          | 0.3138 | 0.1363 | 0.2765 | 0.2763    | 17.5347 |
| 2.2107        | 4.0   | 87012 | 1.8477          | 0.3156 | 0.1379 | 0.2767 | 0.2765    | 17.5537 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1