File size: 4,436 Bytes
d46ca7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b604e4
 
 
 
f7de8cf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
base_model: alpindale/Mistral-7B-v0.2-hf
tags:
- generated_from_trainer
model-index:
- name: workspace/dolphin-2.8-mistral-7b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml

base_model: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/datasets/dolphin201-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt.jsonl
    type: sharegpt
  - path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt.jsonl
    type: sharegpt
  - path: /workspace/datasets/not_samantha_norefusals.jsonl
    type: sharegpt
  - path: /workspace/datasets/openhermes2_5-sharegpt.jsonl
    type: sharegpt

chat_template: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /workspace/dolphin-2.8-mistral-7b

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 3
num_epochs: 4
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000005
optimizer: adamw_bnb_8bit

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10

eval_steps: 73
eval_table_size:
eval_table_max_new_tokens:
eval_sample_packing: false
saves_per_epoch: 
save_steps: 73
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

```

</details><br>

# workspace/dolphin-2.8-mistral-7b

This model is a fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4828

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 10
- gradient_accumulation_steps: 8
- total_train_batch_size: 240
- total_eval_batch_size: 30
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1736        | 0.0   | 1    | 1.0338          |
| 0.6106        | 0.36  | 73   | 0.5439          |
| 0.5766        | 0.72  | 146  | 0.5171          |
| 0.5395        | 1.06  | 219  | 0.5045          |
| 0.5218        | 1.42  | 292  | 0.4976          |
| 0.5336        | 1.78  | 365  | 0.4915          |
| 0.5018        | 2.13  | 438  | 0.4885          |
| 0.5113        | 2.48  | 511  | 0.4856          |
| 0.5066        | 2.84  | 584  | 0.4838          |
| 0.4967        | 3.19  | 657  | 0.4834          |
| 0.4956        | 3.55  | 730  | 0.4830          |
| 0.5026        | 3.9   | 803  | 0.4828          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0


# Quants

- [dagbs/-GGUF](https://huggingface.co/dagbs/dolphin-2.8-mistral-7b-v02-GGUF)

- [bartowski/ExLlamaV2](https://huggingface.co/bartowski/dolphin-2.8-mistral-7b-v02-exl2)