Create dolphin_vision_streamlit.py
Browse files- dolphin_vision_streamlit.py +76 -0
dolphin_vision_streamlit.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from PIL import Image
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
# Disable warnings and progress bars
|
9 |
+
transformers.logging.set_verbosity_error()
|
10 |
+
transformers.logging.disable_progress_bar()
|
11 |
+
warnings.filterwarnings('ignore')
|
12 |
+
|
13 |
+
# Set device
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
torch.set_default_device(device)
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
model_name = 'cognitivecomputations/dolphin-vision-72b'
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_name,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
device_map='auto',
|
24 |
+
trust_remote_code=True
|
25 |
+
)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
trust_remote_code=True
|
29 |
+
)
|
30 |
+
return model, tokenizer
|
31 |
+
|
32 |
+
def generate_response(model, tokenizer, prompt, image=None):
|
33 |
+
messages = [
|
34 |
+
{"role": "user", "content": f'<image>\n{prompt}' if image else prompt}
|
35 |
+
]
|
36 |
+
text = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=False,
|
39 |
+
add_generation_prompt=True
|
40 |
+
)
|
41 |
+
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
42 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
43 |
+
|
44 |
+
if image:
|
45 |
+
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
46 |
+
else:
|
47 |
+
image_tensor = None
|
48 |
+
|
49 |
+
output_ids = model.generate(
|
50 |
+
input_ids,
|
51 |
+
images=image_tensor,
|
52 |
+
max_new_tokens=2048,
|
53 |
+
use_cache=True
|
54 |
+
)[0]
|
55 |
+
|
56 |
+
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
57 |
+
|
58 |
+
st.title("Chat with DolphinVision 🐬")
|
59 |
+
|
60 |
+
model, tokenizer = load_model()
|
61 |
+
|
62 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
63 |
+
image = None
|
64 |
+
if uploaded_file is not None:
|
65 |
+
image = Image.open(uploaded_file)
|
66 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
67 |
+
|
68 |
+
user_input = st.text_input("You:", "")
|
69 |
+
|
70 |
+
if st.button("Send"):
|
71 |
+
if user_input:
|
72 |
+
with st.spinner("Generating response..."):
|
73 |
+
response = generate_response(model, tokenizer, user_input, image)
|
74 |
+
st.text_area("DolphinVision:", value=response, height=200)
|
75 |
+
else:
|
76 |
+
st.warning("Please enter a message.")
|