--- base_model: BAAI/bge-m3 datasets: [] language: - es library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2947 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Es uso privativo el que determina la ocupación de una porción del dominio público, de modo que se limita o excluye la utilización del mismo por otros interesados. sentences: - ¿Qué es el uso privativo de los bienes de dominio público? - ¿Qué es la sanidad ambiental? - ¿Qué información básica debe contener la información que se facilita al afectado cuando se obtienen datos personales de él? - source_sentence: 'Las retribuciones básicas, que se fijan en la Ley de Presupuestos Generales del Estado, estarán integradas única y exclusivamente por: a) El sueldo asignado a cada Subgrupo o Grupo de clasificación profesional, en el supuesto de que éste no tenga Subgrupo. b) Los trienios, que consisten en una cantidad, que será igual para cada Subgrupo o Grupo de clasificación profesional, en el supuesto de que éste no tenga Subgrupo, por cada tres años de servicio.' sentences: - ¿Qué se entiende por retribuciones básicas? - ¿Cuál es el título competencial de esta ley orgánica? - ¿Qué se aprueba a propuesta del Ministro de Hacienda? - source_sentence: Se reconoce el valor social de las niñas, niños y adolescentes como personas que realizan un aporte afectivo, cultural y ético al caudal social, y cuyo protagonismo, creatividad y posicionamiento activo enriquecen la vida colectiva. sentences: - ¿Qué sucede si se produce un incumplimiento de las actuaciones establecidas en el Plan de inclusión sociolaboral? - ¿Qué se reconoce en cuanto al valor social de la infancia? - ¿Cuál es el plazo de prescripción de las infracciones? - source_sentence: Las empresas y las universidades podrán promover y participar en programas de voluntariado que cumplan los requisitos establecidos en esta Ley. sentences: - ¿Cuál es la consideración de las infracciones muy graves? - ¿Qué tipo de empresas pueden promover y participar en programas de voluntariado? - ¿Qué tipo de entidades están obligadas a cumplir con las obligaciones de publicidad activa? - source_sentence: Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2. sentences: - ¿Cuál es el papel del Consejo de Salud de Área? - ¿Qué se considera discriminación indirecta? - ¿Qué tipo de información se considera veraz? model-index: - name: BGE large Legal Spanish results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.5335365853658537 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7926829268292683 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8475609756097561 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8810975609756098 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5335365853658537 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26422764227642276 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1695121951219512 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08810975609756097 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5335365853658537 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7926829268292683 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8475609756097561 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8810975609756098 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7186522230387037 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6652003484320559 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6705758430588792 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.5365853658536586 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7987804878048781 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8445121951219512 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8871951219512195 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5365853658536586 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.266260162601626 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16890243902439023 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08871951219512193 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5365853658536586 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7987804878048781 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8445121951219512 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8871951219512195 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7219693426433157 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6678172183507551 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6724989076281951 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.5396341463414634 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7987804878048781 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8414634146341463 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8841463414634146 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5396341463414634 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.266260162601626 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16829268292682925 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08841463414634146 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5396341463414634 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7987804878048781 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8414634146341463 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8841463414634146 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7234708981888988 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6705732191250486 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.675333785038191 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.5487804878048781 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7865853658536586 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8201219512195121 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8780487804878049 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5487804878048781 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2621951219512195 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16402439024390242 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08780487804878048 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5487804878048781 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7865853658536586 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8201219512195121 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8780487804878049 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.72218275626782 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6713293650793652 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6765227617116516 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.5274390243902439 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7713414634146342 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8201219512195121 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8628048780487805 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5274390243902439 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.25711382113821135 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16402439024390242 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08628048780487804 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5274390243902439 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7713414634146342 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8201219512195121 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8628048780487805 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7052427974875376 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6535327138985677 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6594048434747166 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.5060975609756098 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7378048780487805 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.801829268292683 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8597560975609756 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5060975609756098 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2459349593495935 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16036585365853656 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08597560975609755 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5060975609756098 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7378048780487805 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.801829268292683 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8597560975609756 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6884036058438198 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6329074719318624 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6380929161741958 name: Cosine Map@100 --- # BGE large Legal Spanish This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Language:** es - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-3") # Run inference sentences = [ 'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.', '¿Qué se considera discriminación indirecta?', '¿Qué tipo de información se considera veraz?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5335 | | cosine_accuracy@3 | 0.7927 | | cosine_accuracy@5 | 0.8476 | | cosine_accuracy@10 | 0.8811 | | cosine_precision@1 | 0.5335 | | cosine_precision@3 | 0.2642 | | cosine_precision@5 | 0.1695 | | cosine_precision@10 | 0.0881 | | cosine_recall@1 | 0.5335 | | cosine_recall@3 | 0.7927 | | cosine_recall@5 | 0.8476 | | cosine_recall@10 | 0.8811 | | cosine_ndcg@10 | 0.7187 | | cosine_mrr@10 | 0.6652 | | **cosine_map@100** | **0.6706** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5366 | | cosine_accuracy@3 | 0.7988 | | cosine_accuracy@5 | 0.8445 | | cosine_accuracy@10 | 0.8872 | | cosine_precision@1 | 0.5366 | | cosine_precision@3 | 0.2663 | | cosine_precision@5 | 0.1689 | | cosine_precision@10 | 0.0887 | | cosine_recall@1 | 0.5366 | | cosine_recall@3 | 0.7988 | | cosine_recall@5 | 0.8445 | | cosine_recall@10 | 0.8872 | | cosine_ndcg@10 | 0.722 | | cosine_mrr@10 | 0.6678 | | **cosine_map@100** | **0.6725** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5396 | | cosine_accuracy@3 | 0.7988 | | cosine_accuracy@5 | 0.8415 | | cosine_accuracy@10 | 0.8841 | | cosine_precision@1 | 0.5396 | | cosine_precision@3 | 0.2663 | | cosine_precision@5 | 0.1683 | | cosine_precision@10 | 0.0884 | | cosine_recall@1 | 0.5396 | | cosine_recall@3 | 0.7988 | | cosine_recall@5 | 0.8415 | | cosine_recall@10 | 0.8841 | | cosine_ndcg@10 | 0.7235 | | cosine_mrr@10 | 0.6706 | | **cosine_map@100** | **0.6753** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5488 | | cosine_accuracy@3 | 0.7866 | | cosine_accuracy@5 | 0.8201 | | cosine_accuracy@10 | 0.878 | | cosine_precision@1 | 0.5488 | | cosine_precision@3 | 0.2622 | | cosine_precision@5 | 0.164 | | cosine_precision@10 | 0.0878 | | cosine_recall@1 | 0.5488 | | cosine_recall@3 | 0.7866 | | cosine_recall@5 | 0.8201 | | cosine_recall@10 | 0.878 | | cosine_ndcg@10 | 0.7222 | | cosine_mrr@10 | 0.6713 | | **cosine_map@100** | **0.6765** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5274 | | cosine_accuracy@3 | 0.7713 | | cosine_accuracy@5 | 0.8201 | | cosine_accuracy@10 | 0.8628 | | cosine_precision@1 | 0.5274 | | cosine_precision@3 | 0.2571 | | cosine_precision@5 | 0.164 | | cosine_precision@10 | 0.0863 | | cosine_recall@1 | 0.5274 | | cosine_recall@3 | 0.7713 | | cosine_recall@5 | 0.8201 | | cosine_recall@10 | 0.8628 | | cosine_ndcg@10 | 0.7052 | | cosine_mrr@10 | 0.6535 | | **cosine_map@100** | **0.6594** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5061 | | cosine_accuracy@3 | 0.7378 | | cosine_accuracy@5 | 0.8018 | | cosine_accuracy@10 | 0.8598 | | cosine_precision@1 | 0.5061 | | cosine_precision@3 | 0.2459 | | cosine_precision@5 | 0.1604 | | cosine_precision@10 | 0.086 | | cosine_recall@1 | 0.5061 | | cosine_recall@3 | 0.7378 | | cosine_recall@5 | 0.8018 | | cosine_recall@10 | 0.8598 | | cosine_ndcg@10 | 0.6884 | | cosine_mrr@10 | 0.6329 | | **cosine_map@100** | **0.6381** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 32 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 32 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.8649 | 10 | 1.5054 | - | - | - | - | - | - | - | | 0.9514 | 11 | - | 0.8399 | 0.6684 | 0.6148 | 0.6574 | 0.6770 | 0.5281 | 0.6691 | | 1.7297 | 20 | 1.0127 | - | - | - | - | - | - | - | | 1.9892 | 23 | - | 0.5057 | 0.6757 | 0.6596 | 0.6715 | 0.6738 | 0.6017 | 0.6719 | | 2.5946 | 30 | 0.5708 | - | - | - | - | - | - | - | | 2.9405 | 34 | - | 0.4593 | 0.6781 | 0.6551 | 0.6795 | 0.6806 | 0.6165 | 0.6697 | | 3.4595 | 40 | 0.2618 | - | - | - | - | - | - | - | | 3.9784 | 46 | - | 0.4122 | 0.6787 | 0.6607 | 0.6842 | 0.6795 | 0.6227 | 0.6793 | | 4.3243 | 50 | 0.1079 | - | - | - | - | - | - | - | | 4.9297 | 57 | - | 0.3717 | 0.6827 | 0.6609 | 0.6810 | 0.6868 | 0.6277 | 0.6769 | | 5.1892 | 60 | 0.0574 | - | - | - | - | - | - | - | | 5.9676 | 69 | - | 0.3394 | 0.6824 | 0.6493 | 0.6777 | 0.6784 | 0.6344 | 0.6685 | | 6.0541 | 70 | 0.0342 | - | - | - | - | - | - | - | | **6.9189** | **80** | **0.0211** | **0.3379** | **0.6771** | **0.6627** | **0.6764** | **0.6766** | **0.6395** | **0.6723** | | 7.7838 | 90 | 0.0136 | - | - | - | - | - | - | - | | 7.9568 | 92 | - | 0.3128 | 0.6790 | 0.6536 | 0.6789 | 0.6782 | 0.6279 | 0.6730 | | 8.6486 | 100 | 0.0087 | - | - | - | - | - | - | - | | 8.9946 | 104 | - | 0.3163 | 0.6811 | 0.6542 | 0.6716 | 0.6744 | 0.6413 | 0.6758 | | 9.5135 | 110 | 0.0073 | - | - | - | - | - | - | - | | 9.9459 | 115 | - | 0.2937 | 0.6730 | 0.6569 | 0.6735 | 0.6747 | 0.6380 | 0.6710 | | 10.3784 | 120 | 0.0049 | - | - | - | - | - | - | - | | 10.9838 | 127 | - | 0.2927 | 0.6701 | 0.6578 | 0.6772 | 0.6724 | 0.6355 | 0.6738 | | 11.2432 | 130 | 0.0044 | - | - | - | - | - | - | - | | 11.9351 | 138 | - | 0.2837 | 0.6720 | 0.6558 | 0.6791 | 0.6752 | 0.6376 | 0.6783 | | 12.1081 | 140 | 0.0035 | - | - | - | - | - | - | - | | 12.9730 | 150 | 0.0031 | 0.2897 | 0.6746 | 0.6610 | 0.6708 | 0.6739 | 0.6375 | 0.6769 | | 13.8378 | 160 | 0.0027 | - | - | - | - | - | - | - | | 13.9243 | 161 | - | 0.2961 | 0.6733 | 0.6562 | 0.6692 | 0.6704 | 0.6402 | 0.6740 | | 14.7027 | 170 | 0.0026 | - | - | - | - | - | - | - | | 14.9622 | 173 | - | 0.2934 | 0.6734 | 0.6557 | 0.6720 | 0.6720 | 0.6368 | 0.6726 | | 15.5676 | 180 | 0.0025 | - | - | - | - | - | - | - | | 16.0 | 185 | - | 0.2932 | 0.6735 | 0.6561 | 0.6718 | 0.6744 | 0.6414 | 0.6773 | | 16.4324 | 190 | 0.0023 | - | - | - | - | - | - | - | | 16.9514 | 196 | - | 0.2912 | 0.6708 | 0.6582 | 0.6761 | 0.6794 | 0.6367 | 0.6753 | | 17.2973 | 200 | 0.0021 | - | - | - | - | - | - | - | | 17.9892 | 208 | - | 0.2925 | 0.6726 | 0.6582 | 0.6747 | 0.6773 | 0.6357 | 0.6737 | | 18.1622 | 210 | 0.0022 | - | - | - | - | - | - | - | | 18.9405 | 219 | - | 0.2965 | 0.6688 | 0.6563 | 0.6758 | 0.6769 | 0.6372 | 0.6765 | | 19.0270 | 220 | 0.002 | - | - | - | - | - | - | - | | 19.8919 | 230 | 0.0019 | - | - | - | - | - | - | - | | 19.9784 | 231 | - | 0.3010 | 0.6697 | 0.6563 | 0.6768 | 0.6775 | 0.6380 | 0.6730 | | 20.7568 | 240 | 0.0018 | - | - | - | - | - | - | - | | 20.9297 | 242 | - | 0.3025 | 0.6728 | 0.6564 | 0.6764 | 0.6757 | 0.6367 | 0.6728 | | 21.6216 | 250 | 0.0019 | - | - | - | - | - | - | - | | 21.9676 | 254 | - | 0.3043 | 0.6707 | 0.6533 | 0.6733 | 0.6750 | 0.6352 | 0.6729 | | 22.4865 | 260 | 0.0018 | - | - | - | - | - | - | - | | 22.9189 | 265 | - | 0.3029 | 0.6706 | 0.6554 | 0.6734 | 0.6757 | 0.6355 | 0.6715 | | 23.3514 | 270 | 0.0018 | - | - | - | - | - | - | - | | 23.9568 | 277 | - | 0.3046 | 0.6706 | 0.6586 | 0.6733 | 0.6740 | 0.6383 | 0.6731 | | 24.2162 | 280 | 0.0018 | - | - | - | - | - | - | - | | 24.9946 | 289 | - | 0.3045 | 0.6722 | 0.6553 | 0.6740 | 0.6752 | 0.6364 | 0.6735 | | 25.0811 | 290 | 0.0016 | - | - | - | - | - | - | - | | 25.9459 | 300 | 0.0017 | 0.3061 | 0.6703 | 0.6564 | 0.6770 | 0.6736 | 0.6371 | 0.6724 | | 26.8108 | 310 | 0.0016 | - | - | - | - | - | - | - | | 26.9838 | 312 | - | 0.3023 | 0.6694 | 0.6581 | 0.6790 | 0.6771 | 0.6375 | 0.6731 | | 27.6757 | 320 | 0.0015 | - | - | - | - | - | - | - | | 27.9351 | 323 | - | 0.3035 | 0.6701 | 0.6585 | 0.6748 | 0.6787 | 0.6366 | 0.6729 | | 28.5405 | 330 | 0.0016 | - | - | - | - | - | - | - | | 28.9730 | 335 | - | 0.3017 | 0.6686 | 0.6568 | 0.6748 | 0.6710 | 0.6357 | 0.6713 | | 29.4054 | 340 | 0.0016 | - | - | - | - | - | - | - | | 29.9243 | 346 | - | 0.3043 | 0.6683 | 0.6549 | 0.6722 | 0.6762 | 0.6367 | 0.6712 | | 30.2703 | 350 | 0.0017 | - | - | - | - | - | - | - | | 30.4432 | 352 | - | 0.3056 | 0.6706 | 0.6594 | 0.6765 | 0.6753 | 0.6381 | 0.6725 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.2.0+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```