File size: 8,480 Bytes
489b3ee
1ba7f96
 
534dd40
b2531f0
 
534dd40
b2531f0
 
 
5c0b4c9
b2531f0
 
489b3ee
4abd41a
f2d7d2a
f7de7b3
5c0b4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2531f0
 
 
f7de7b3
 
 
b2531f0
 
5c0b4c9
 
 
cedac39
5c0b4c9
 
 
 
 
7cc4840
cedac39
b2531f0
 
 
 
 
5c0b4c9
 
a62f7ac
 
 
 
 
 
 
 
 
b2531f0
5c0b4c9
b2531f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0b4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
---
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- art
- artistic
- diffusers
- protogen
inference: true
license: creativeml-openrail-m
---
<center><img src="https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/resolve/main/Protogen_v2.2-512.png" style="height:690px; border-radius: 7%; border: 10px solid #663380; padding-top:0px;" span title="Protogen v2.2 Nurse Raw Output"></center>



<center><h1>Protogen v2.2</h1></center>
<center><p><em>Research Model by <a href="https://instagram.com/officialvictorespinoza">darkstorm2150</a></em></p></center>
</div>

## Table of contents
* [General info](#general-info)
* [Granular Adaptive Learning](#granular-adaptive-learning)
* [Setup](#setup)
* [Space](#space)
* [CompVis](#compvis)
* [Diffusers](#🧨-diffusers)
* [Checkpoint Merging Data Reference](#checkpoint-merging-data-reference)
* [License](#license)

## General info

Protogen was warm-started with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and fine-tuned on a large amount 
of data from large datasets new and trending on civitai.com.

You can enforce camera capture by using the prompt with "modelshoot style".

It should also be very "dreambooth-able", being able to generate high fidelity faces with a little amount of steps (see [dreambooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth)).

## Granular Adaptive Learning

Granular adaptive learning is a machine learning technique that focuses on adjusting the learning process at a fine-grained level, rather than making global adjustments to the model. This approach allows the model to adapt to specific patterns or features in the data, rather than making assumptions based on general trends.

Granular adaptive learning can be achieved through techniques such as active learning, which allows the model to select the data it wants to learn from, or through the use of reinforcement learning, where the model receives feedback on its performance and adapts based on that feedback. It can also be achieved through techniques such as online learning where the model adjust itself as it receives more data.

Granular adaptive learning is often used in situations where the data is highly diverse or non-stationary and where the model needs to adapt quickly to changing patterns. This is often the case in dynamic environments such as robotics, financial markets, and natural language processing.

## Setup
To run this model, download the model.ckpt or model.safetensor and install it in your "stable-diffusion-webui\models\Stable-diffusion" directory

## Space

We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run dreamlike-diffusion-1.0:
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/darkstorm2150/Stable-Diffusion-Protogen-webui)

## CompVis

## CKPT
[Download Protogen v2.2.ckpt (4.27GB)](https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/blob/main/Protogen_V2.2.ckpt)

[Download Protogen v2.2-pruned-fp16 (1.89GB)](https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/resolve/main/Protogen_V2.2-pruned-fp16.ckpt)

## Safetensors
[Download Protogen v2.2.safetensor (4.27GB)](https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/resolve/main/Protogen_V2.2.safetensors)

[Download Protogen V2.2-pruned-fp16.safetensors (1.89GB)](https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/resolve/main/Protogen_V2.2-pruned-fp16.safetensors)

## 🧨 Diffusers

This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).

```python
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch

prompt = (
"modelshoot style, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful artwork in the world, "
"english medieval witch, black silk vale, pale skin, black silk robe, black cat, necromancy magic, medieval era, "
"photorealistic painting by Ed Blinkey, Atey Ghailan, Studio Ghibli, by Jeremy Mann, Greg Manchess, Antonio Moro, trending on ArtStation, "
"trending on CGSociety, Intricate, High Detail, Sharp focus, dramatic, photorealistic painting art by midjourney and greg rutkowski"
)

model_id = "darkstorm2150/Protogen_v2.2_Official_Release"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

image = pipe(prompt, num_inference_steps=25).images[0]

image.save("./result.jpg")
```

## - PENDING DATA FOR MERGE, RPGv2 not accounted..
## Checkpoint Merging Data Reference

<style>
.myTable {
border-collapse:collapse; 
}
.myTable th { 
background-color:#663380;
color:white; 
}
.myTable td, .myTable th { 
padding:5px;
border:1px solid #663380; 
}
</style>
<table class="myTable">
<tr>
<th>Models</th>
<th>Protogen v2.2 (Anime)</th>
<th>Protogen x3.4 (Photo)</th>
<th>Protogen x5.3 (Photo)</th>
<th>Protogen x5.8 (Sci-fi/Anime)</th>
<th>Protogen x5.9 (Dragon)</th>
<th>Protogen x7.4 (Eclipse)</th>
<th>Protogen x8.0 (Nova)</th>
<th>Protogen x8.6 (Infinity)</th>
</tr>
<tr>
<td>seek_art_mega v1</td>
<td>52.50%</td>
<td>42.76%</td>
<td>42.63%</td>
<td></td>
<td></td>
<td></td>
<td>25.21%</td>
<td>14.83%</td>
</tr>
<tr>
<td>modelshoot v1</td>
<td>30.00%</td>
<td>24.44%</td>
<td>24.37%</td>
<td>2.56%</td>
<td>2.05%</td>
<td>3.48%</td>
<td>22.91%</td>
<td>13.48%</td>
</tr>
<tr>
<td>elldreth v1</td>
<td>12.64%</td>
<td>10.30%</td>
<td>10.23%</td>
<td></td>
<td></td>
<td></td>
<td>6.06%</td>
<td>3.57%</td>
</tr>
<tr>
<td>photoreal v2</td>
<td></td>
<td></td>
<td>10.00%</td>
<td>48.64%</td>
<td>38.91%</td>
<td>66.33%</td>
<td>20.49%</td>
<td>12.06%</td>
</tr>
<tr>
<td>analogdiffusion v1</td>
<td></td>
<td>4.75%</td>
<td>4.50%</td>
<td></td>
<td></td>
<td></td>
<td>1.75%</td>
<td>1.03%</td>
</tr>
<tr>
<td>openjourney v2</td>
<td></td>
<td>4.51%</td>
<td>4.28%</td>
<td></td>
<td></td>
<td>4.75%</td>
<td>2.26%</td>
<td>1.33%</td>
</tr>
<tr>
<td>hassan1.4</td>
<td>2.63%</td>
<td>2.14%</td>
<td>2.13%</td>
<td></td>
<td></td>
<td></td>
<td>1.26%</td>
<td>0.74%</td>
</tr>
<tr>
<td>f222</td>
<td>2.23%</td>
<td>1.82%</td>
<td>1.81%</td>
<td></td>
<td></td>
<td></td>
<td>1.07%</td>
<td>0.63%</td>
</tr>
<tr>
<td>hasdx</td>
<td></td>
<td></td>
<td></td>
<td>20.00%</td>
<td>16.00%</td>
<td>4.07%</td>
<td>5.01%</td>
<td>2.95%</td>
</tr>
<tr>
<td>moistmix</td>
<td></td>
<td></td>
<td></td>
<td>16.00%</td>
<td>12.80%</td>
<td>3.86%</td>
<td>4.08%</td>
<td>2.40%</td>
</tr>
<tr>
<td>roboDiffusion v1</td>
<td></td>
<td>4.29%</td>
<td></td>
<td>12.80%</td>
<td>10.24%</td>
<td>3.67%</td>
<td>4.41%</td>
<td>2.60%</td>
</tr>
<tr>
<td>RPG v3</td>
<td></td>
<td>5.00%</td>
<td></td>
<td></td>
<td>20.00%</td>
<td>4.29%</td>
<td>4.29%</td>
<td>2.52%</td>
</tr>
<tr>
<td>anything&everything</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51%</td>
<td>0.56%</td>
<td>0.33%</td>
</tr>
<tr>
<td>dreamlikediff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0%</td>
<td>0.63%</td>
<td>0.37%</td>
</tr>
<tr>
<td>sci-fidiff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.10%</td>
</tr>
<tr>
<td>synthwavepunk v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.26%</td>
</tr>
<tr>
<td>mashupv2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.51%</td>
</tr>
<tr>
<td>dreamshaper 252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.04%</td>
</tr>
<tr>
<td>comicdiff v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.25%</td>
</tr>
<tr>
<td>artEros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00%</td>
</tr>
</table>

## License

By downloading you agree to the terms of these licenses

<a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license">CreativeML Open RAIL-M</a>

<a href="https://huggingface.co/coreco/seek.art_MEGA/blob/main/LICENSE.txt">Seek Art Mega License</a>