Datasets:
Tasks:
Image Segmentation
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Create gen_script.py
Browse files- gen_script.py +229 -0
gen_script.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import json
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
_VERSION = "0.1.0"
|
8 |
+
|
9 |
+
_CITATION = """
|
10 |
+
@inproceedings{8100027,
|
11 |
+
title = {Scene Parsing through ADE20K Dataset},
|
12 |
+
author = {Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
|
13 |
+
year = 2017,
|
14 |
+
booktitle = {2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
15 |
+
volume = {},
|
16 |
+
number = {},
|
17 |
+
pages = {5122--5130},
|
18 |
+
doi = {10.1109/CVPR.2017.544},
|
19 |
+
keywords = {Image segmentation;Semantics;Sun;Labeling;Visualization;Neural networks;Computer vision}
|
20 |
+
}
|
21 |
+
@misc{zhou2018semantic,
|
22 |
+
title = {Semantic Understanding of Scenes through the ADE20K Dataset},
|
23 |
+
author = {Bolei Zhou and Hang Zhao and Xavier Puig and Tete Xiao and Sanja Fidler and Adela Barriuso and Antonio Torralba},
|
24 |
+
year = 2018,
|
25 |
+
eprint = {1608.05442},
|
26 |
+
archiveprefix = {arXiv},
|
27 |
+
primaryclass = {cs.CV}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """
|
32 |
+
ADE20K is composed of more than 27K images from the SUN and Places databases.
|
33 |
+
Images are fully annotated with objects, spanning over 3K object categories.
|
34 |
+
Many of the images also contain object parts, and parts of parts.
|
35 |
+
We also provide the original annotated polygons, as well as object instances for amodal segmentation.
|
36 |
+
Images are also anonymized, blurring faces and license plates.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_HOMEPAGE = "https://groups.csail.mit.edu/vision/datasets/ADE20K/"
|
40 |
+
|
41 |
+
_LICENSE = "Creative Commons BSD-3 License Agreement"
|
42 |
+
|
43 |
+
_FEATURES = datasets.Features(
|
44 |
+
{
|
45 |
+
"image": datasets.Image(mode="RGB"),
|
46 |
+
"segmentations": datasets.Sequence(datasets.Image(mode="RGB")),
|
47 |
+
"instances": datasets.Sequence(datasets.Image(mode="L")),
|
48 |
+
"filename": datasets.Value("string"),
|
49 |
+
"folder": datasets.Value("string"),
|
50 |
+
"source": datasets.Features(
|
51 |
+
{
|
52 |
+
"folder": datasets.Value("string"),
|
53 |
+
"filename": datasets.Value("string"),
|
54 |
+
"origin": datasets.Value("string"),
|
55 |
+
}
|
56 |
+
),
|
57 |
+
"scene": datasets.Sequence(datasets.Value("string")),
|
58 |
+
"objects": [
|
59 |
+
{
|
60 |
+
"id": datasets.Value("uint16"),
|
61 |
+
"name": datasets.Value("string"),
|
62 |
+
"name_ndx": datasets.Value("uint16"),
|
63 |
+
"hypernym": datasets.Sequence(datasets.Value("string")),
|
64 |
+
"raw_name": datasets.Value("string"),
|
65 |
+
"attributes": datasets.Value("string"),
|
66 |
+
"depth_ordering_rank": datasets.Value("uint16"),
|
67 |
+
"occluded": datasets.Value("bool"),
|
68 |
+
"crop": datasets.Value(dtype="bool"),
|
69 |
+
"parts": {
|
70 |
+
"is_part_of": datasets.Value("uint16"),
|
71 |
+
"part_level": datasets.Value("uint8"),
|
72 |
+
"has_parts": datasets.Sequence(datasets.Value("uint16")),
|
73 |
+
},
|
74 |
+
"polygon": {
|
75 |
+
"x": datasets.Sequence(datasets.Value("uint16")),
|
76 |
+
"y": datasets.Sequence(datasets.Value("uint16")),
|
77 |
+
"click_date": datasets.Sequence(datasets.Value("timestamp[us]")),
|
78 |
+
},
|
79 |
+
"saved_date": datasets.Value("timestamp[us]"),
|
80 |
+
}
|
81 |
+
],
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
class ADE20K(datasets.GeneratorBasedBuilder):
|
87 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000
|
88 |
+
|
89 |
+
def _info(self):
|
90 |
+
return datasets.DatasetInfo(
|
91 |
+
features=_FEATURES,
|
92 |
+
supervised_keys=None,
|
93 |
+
description=_DESCRIPTION,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
license=_LICENSE,
|
96 |
+
version=_VERSION,
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
101 |
+
archive_training = Path("ADE20K_2021_17_01/images/ADE/training")
|
102 |
+
archive_validation = Path("ADE20K_2021_17_01/images/ADE/validation")
|
103 |
+
|
104 |
+
jsons_training = sorted(list(archive_training.rglob("*.json")))
|
105 |
+
jsons_validation = sorted(list(archive_validation.rglob("*.json")))
|
106 |
+
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN,
|
110 |
+
gen_kwargs={"jsons": jsons_training},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.VALIDATION,
|
114 |
+
gen_kwargs={"jsons": jsons_validation},
|
115 |
+
),
|
116 |
+
]
|
117 |
+
|
118 |
+
def parse_date(self, date: str) -> datetime:
|
119 |
+
if date == []:
|
120 |
+
return None
|
121 |
+
|
122 |
+
try:
|
123 |
+
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S:%f")
|
124 |
+
return timestamp
|
125 |
+
except:
|
126 |
+
pass
|
127 |
+
|
128 |
+
try:
|
129 |
+
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S:%f")
|
130 |
+
return timestamp
|
131 |
+
except:
|
132 |
+
pass
|
133 |
+
|
134 |
+
try:
|
135 |
+
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S")
|
136 |
+
return timestamp
|
137 |
+
except:
|
138 |
+
pass
|
139 |
+
|
140 |
+
try:
|
141 |
+
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S")
|
142 |
+
return timestamp
|
143 |
+
except:
|
144 |
+
pass
|
145 |
+
|
146 |
+
raise ValueError(f"Could not parse date: {date}")
|
147 |
+
|
148 |
+
def parse_imsize(self, imsize: list[int]) -> list[int]:
|
149 |
+
if len(imsize) == 2:
|
150 |
+
return imsize + [3]
|
151 |
+
return imsize
|
152 |
+
|
153 |
+
def parse_json(self, json_path: Path):
|
154 |
+
with json_path.open("r", encoding="ISO-8859-1") as f:
|
155 |
+
data = json.load(f)
|
156 |
+
annotation = data["annotation"]
|
157 |
+
objects = annotation["object"]
|
158 |
+
|
159 |
+
segmentations = list(
|
160 |
+
json_path.parent.glob(
|
161 |
+
f"{annotation['filename'].removesuffix(".jpg")}_parts*"
|
162 |
+
)
|
163 |
+
)
|
164 |
+
segmentations = [str(part) for part in segmentations]
|
165 |
+
main_mask = json_path.parent / annotation["filename"]
|
166 |
+
main_mask = str(main_mask.with_suffix("")) + "_seg.png"
|
167 |
+
segmentations.insert(0, main_mask)
|
168 |
+
|
169 |
+
instances = [
|
170 |
+
json_path.parent / object["instance_mask"] for object in objects
|
171 |
+
]
|
172 |
+
instances = [str(instance) for instance in instances]
|
173 |
+
|
174 |
+
return {
|
175 |
+
"image": str(json_path.parent / annotation["filename"]),
|
176 |
+
"segmentations": segmentations,
|
177 |
+
"instances": instances,
|
178 |
+
"filename": annotation["filename"],
|
179 |
+
"folder": annotation["folder"],
|
180 |
+
"source": {
|
181 |
+
"folder": annotation["source"]["folder"],
|
182 |
+
"filename": annotation["source"]["filename"],
|
183 |
+
"origin": annotation["source"]["origin"],
|
184 |
+
},
|
185 |
+
"scene": annotation["scene"],
|
186 |
+
"objects": [
|
187 |
+
{
|
188 |
+
"id": object["id"],
|
189 |
+
"name": object["name"],
|
190 |
+
"name_ndx": object["name_ndx"],
|
191 |
+
"hypernym": object["hypernym"],
|
192 |
+
"raw_name": object["raw_name"],
|
193 |
+
"attributes": ""
|
194 |
+
if object["attributes"] == []
|
195 |
+
else object["attributes"],
|
196 |
+
"depth_ordering_rank": object["depth_ordering_rank"],
|
197 |
+
"occluded": object["occluded"] == "yes",
|
198 |
+
"crop": object["crop"] == "1",
|
199 |
+
"parts": {
|
200 |
+
"part_level": object["parts"]["part_level"],
|
201 |
+
"is_part_of": None
|
202 |
+
if object["parts"]["ispartof"] == []
|
203 |
+
else object["parts"]["ispartof"],
|
204 |
+
"has_parts": [object["parts"]["hasparts"]]
|
205 |
+
if isinstance(object["parts"]["hasparts"], int)
|
206 |
+
else object["parts"]["hasparts"],
|
207 |
+
},
|
208 |
+
"polygon": {
|
209 |
+
"x": list(
|
210 |
+
map(lambda x: int(max(0, x)), object["polygon"]["x"])
|
211 |
+
),
|
212 |
+
"y": list(
|
213 |
+
map(lambda y: int(max(0, y)), object["polygon"]["y"])
|
214 |
+
),
|
215 |
+
"click_date": []
|
216 |
+
if "click_date" not in object["polygon"]
|
217 |
+
else list(
|
218 |
+
map(self.parse_date, object["polygon"]["click_date"])
|
219 |
+
),
|
220 |
+
},
|
221 |
+
"saved_date": self.parse_date(object["saved_date"]),
|
222 |
+
}
|
223 |
+
for object in objects
|
224 |
+
],
|
225 |
+
}
|
226 |
+
|
227 |
+
def _generate_examples(self, jsons: list[Path]):
|
228 |
+
for i, json_path in enumerate(jsons):
|
229 |
+
yield i, self.parse_json(json_path)
|