File size: 5,692 Bytes
c96033d
a0a167f
c96033d
 
 
 
35dd448
c96033d
35dd448
 
c96033d
 
 
 
 
 
 
 
0adab9c
997130c
 
6ae2a73
7a13110
6ae2a73
 
 
2882f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e3cdc
 
 
2882f0b
 
c96033d
 
 
 
 
 
7a13110
c96033d
 
 
7a13110
 
c96033d
 
 
 
 
 
 
 
 
 
 
 
 
155e5dd
c96033d
 
 
 
0adab9c
c96033d
 
 
 
 
0adab9c
c96033d
0adab9c
 
c96033d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1bd653
 
 
 
 
c96033d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e5dd
0adab9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e5dd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
pretty_name: PyAst
annotations_creators:
- machine-generated
language_creators:
- found
language:
- code
license:
- bsd-2-clause
- mit
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text2text-generation
- text-generation
- fill-mask
task_ids: []
paperswithcode_id: null
tags:
- code-modeling
- code-generation
dataset_info:
  features:
  - name: ast
    sequence:
    - name: type
      dtype: string
    - name: value
      dtype: string
    - name: children
      sequence: int32
  config_name: ast
  splits:
  - name: train
    num_bytes: 1870790180
    num_examples: 100000
  - name: test
    num_bytes: 907514993
    num_examples: 50000
  download_size: 526642289
  dataset_size: 2778305173
---
# Dataset Card for [py_ast]

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **homepage**: [py150](https://www.sri.inf.ethz.ch/py150) 
- **Paper**: [Probabilistic Model for Code with Decision Trees](https://www.semanticscholar.org/paper/Probabilistic-model-for-code-with-decision-trees-Raychev-Bielik/62e176977d439aac2e2d7eca834a7a99016dfcaf)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The dataset consists of parsed ASTs that were used to train and evaluate the DeepSyn tool.
The Python programs are collected from GitHub repositories
by removing duplicate files, removing project forks (copy of another existing repository),
keeping only programs that parse and have at most 30'000 nodes in the AST and
we aim to remove obfuscated files

### Supported Tasks and Leaderboards

Code Representation, Unsupervised Learning
### Languages

Python
## Dataset Structure  

### Data Instances
A typical datapoint contains an AST of a python program, parsed.   
The main key is `ast` wherein every program's AST is stored.  
 Each children would have,  
`type` which will formulate the type of the node.   
 `children` which enumerates if a given node has children(non-empty list). 
 `value`, if the given node has any hardcoded value(else "N/A").
 An example would be,     
'''
[ {"type":"Module","children":[1,4]},{"type":"Assign","children":[2,3]},{"type":"NameStore","value":"x"},{"type":"Num","value":"7"},    {"type":"Print","children":[5]},      {"type":"BinOpAdd","children":[6,7]},        {"type":"NameLoad","value":"x"},        {"type":"Num","value":"1"} ]
'''
### Data Fields
- `ast`: a list of dictionaries, wherein every dictionary is a node in the Abstract Syntax Tree.
- `type`: explains the type of the node.
- `children`: list of nodes which are children under the given
- `value`: hardcoded value, if the node holds an hardcoded value.

### Data Splits

The data is split into a training and test set.   
The final split sizes are as follows:

|                  |   train |  validation |
|------------------|--------:|------------:|
| py_ast examples  |  100000 |       50000 |

## Dataset Creation
[More Information Needed]
### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators
Raychev, V., Bielik, P., and Vechev, M
### Licensing Information
MIT, BSD and Apache
### Citation Information
@InProceedings{OOPSLA ’16, ACM,
title = {Probabilistic Model for Code with Decision Trees.},
authors={Raychev, V., Bielik, P., and Vechev, M.},
year={2016}
}

```
@inproceedings{10.1145/2983990.2984041,
author = {Raychev, Veselin and Bielik, Pavol and Vechev, Martin},
title = {Probabilistic Model for Code with Decision Trees},
year = {2016},
isbn = {9781450344449},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2983990.2984041},
doi = {10.1145/2983990.2984041},
booktitle = {Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications},
pages = {731–747},
numpages = {17},
keywords = {Code Completion, Decision Trees, Probabilistic Models of Code},
location = {Amsterdam, Netherlands},
series = {OOPSLA 2016}
}
```

### Contributions

Thanks to [@reshinthadithyan](https://github.com/reshinthadithyan) for adding this dataset.